• Title/Summary/Keyword: Local Strain Concentration

Search Result 39, Processing Time 0.028 seconds

Signal Characteristics of Fiber Bragg Grating Sensor with Gage Length (광섬유 브래그 격자 센서의 게이지 길이에 따른 신호 특성)

  • 강동훈;김대현;방형준;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.155-160
    • /
    • 2002
  • A new fabrication method of FBG sensor with gage length shorter than 10 mm is introduced using the reflection prism with special coating on the surface. It is verified that the bandwidth of FBG sensor increases exponentially as the gage length of it decreases. The transverse stress and strain gradient induced by local stress concentration which occurs during curing has an influence on the FBG sensor with gage length of 2 mm less than that of 10 mm.

  • PDF

Quantitative Damage Model of Steel Members under Severe Seismic Loading (강한 지진하중하에서 강부재의 정량적인 손상 모델)

  • Park, Yeon Soo;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.339-353
    • /
    • 1998
  • In this paper, the previous damage models for structures and their components under seismic repeated loading were reviewed systematically. A failure criterion for steel members under severe cyclic excitations as in strong earthquakes was described. A new approach to seismic damage assessment for steel members was proposed. This method was based on a series of the experimental and numerical investigations for steel members under very low cyclic loading. In this study, very low cyclic loading means repetitive loading, 5 to 20 loading cycles, within the large plastic range. The proposed damage assessment method was focused on the local strain history at the cross-section of the most severe concentration of deformation.

  • PDF

Fatigue Crack Initiation and Propagation From Two Micro Hole Defects (두개의 미소원공결함에서의 피로크랙발생과 전파에 관한 연구)

  • Song, Sam-Hong;Bae, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.842-849
    • /
    • 1997
  • The aim of this study is an investigation of the interaction of two micro hole defects affecting fatigue crack initation life and propagation behavior. The locatio of two micro hole defects was considered as an angle of alignment and the distance between the centers of two micro hole defects. The fatigue cracking behavior is experimented under bending. When micro defects are located close to each other, the fatigue crack initiation lives are varied with their relative locations. In the experiments, the area of local plastic strain strongly played a role in the fatigue crack initiation lives. Therefore we introduce a parameter which contains the plastic deformation area at stress concentrations and propose a fatigue crack initiation life prediction curve. In addition, the directions and propagation rates of fatigue cracks initiated at two micro hole defects are studied experimentally.

Uniaxial tensile test integrated design considering mould-fixture for UHPC

  • Zhang, Xiaochen;Shen, Chao;Zhang, Xuesen;Wu, Xiangguo;Faqiang, Qiu;Mitobaba, Josue G.
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.281-295
    • /
    • 2022
  • Tensile property is one of the excellent properties of ultra-high performance concrete (UHPC), and uniaxial tensile test is an important and challenging mechanical performance test of UHPC. Traditional uniaxial tensile tests of concrete materials have inherent defects such as initial eccentricity, which often lead to cracks and failure in non-test zone, and affect the testing accuracy of tensile properties of materials. In this paper, an original integrated design scheme of mould and end fixture is proposed, which achieves seamless matching between the tension end of specimen and the test fixture, and minimizes the cumulative eccentricity caused by the difference in the matching between the tension end of specimen and the local stress concentration at the end. The stress analysis and optimization design are carried out by finite element method. The curve transition in the end of specimen is preferred compared to straight line transition. The rationality of the new integrated design is verified by uniaxial tensile test of strain hardening UHPC, in which the whole stress-strain curve was measured, including the elastic behavior before cracking,strain hardening behavior after cracking and strain softening behavior.

Analysis of Micromechanical Behavior for Fiber-Reinforced Composites (섬유 보강 복합재료의 미시역학적 거동 해석)

  • Jeong Jae Youn;Ha Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1435-1450
    • /
    • 2004
  • The investigation, which includes the material homogenization and the calculation of local stress concentration of long-fibrous composites in a microscopic level, has been performed to analyze the behavior of fiber-reinforced composites by using finite element method. In order to carry out this study, the finite element models of composites have been generated by the idealized arrays as square and hexagonal-packed type. In the FE analysis, the boundary conditions of micromechanical finite element method(MFEM) have been defined and verified by comparing with the results from multi-cells, and the effective material properties of composites composed of graphite/epoxy have been also evaluated by rules of mixture. For acquiring the relation between the global and local behaviors of composites, the magnifications of strain, stress, and interfacial stress of composites subjected to a longitudinal and transverse loading respectively have been calculated. And the magnifications have been proposed as the stress concentration in the microscopic level at composite material.

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

Computational Design of Electrode Networks for Preferentially Aligned Short Fiber Composite Component Fabrication via Dielectrophoresis

  • Srisawadi, Sasitorn;Cormier, Denis R.;Harrysson, Ola L.A.;Modak, Sayantan
    • International Journal of CAD/CAM
    • /
    • v.12 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • Finite Element Analysis (FEA) is often used to identify local stress/strain concentrations where a component is likely to fail. In order to reduce the degree of strain concentration, component thickness can be increased in those regions, or a stronger material can be used. In short fiber reinforced composite materials, strength and stiffness can be increased through proper fiber alignment. The field-aided microtailoring (FAiMTa) process is one promising method for doing this. FAiMTa uses principles of dielectrophoresis to preferentially align particles or fibers within a matrix. To achieve the preferred fiber orientation, an interdigitated electrode network must be integrated into the mold halves which can be fabricated by additive manufacturing (AM) processes. However, the process of determining the preferred fiber arrangements and electrode locations can be very challenging. This paper presents algorithms to semi-automate the interdigitated electrode design process. The algorithm has been implemented in the Solidworks CAD system and is demonstrated in this paper.

Effect of preparation based on Paenibacillus ehimensis on the content of alkaloid lappakonitine in harvested rhizomes of Aconitum septentrionale

  • Fedorov, N.I.;Ibatullina, Z.A.;Mikhaylenko, O.I.;Zhigunova, S.N.;Shendel, G.V.;Kuzmina, L.Y.;Abdrakhimova, G.S.;Melentiev, A.I.;Kudoyarova, G.R.
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.273-278
    • /
    • 2018
  • We performed an analysis of the effect of postharvest treatment of rhizomes of Aconitum septentrionale Koelle with the biological preparation of Bacispecin based on a cytokinin producing strain of Paenibacillus ehimensis IB-739 on the content of alkaloid lappaconitine in rhizomes. The total alkaloid content was assayed based on exhaustive extraction method. The lappaconitine content was measured by HPLC. The efficiency of the preparation was dependant on either the concentration or intensity of the growth processes in rhizomes. Both parameters varied depending on the stage of development of plants and the amount of precipitation. In the years with normal precipitation, concentrations of Bacispecin ranging from 5 to 10 g/l were found to be most effective for increasing lappaconitine content in rhizomes of A. septentrionale. Whereas, under local drought conditions, the concentration of preparation should be less than 2 g/l.

An Experiment Study of Cyclic Seismic Behavior of Steel Moment Connections Reinforced with Ribs (리브로 보강된 철골 모멘트 접합부의 내전거동에 관한 실험적 연구)

  • 이철호;이재광;정종현;오명호;구은숙
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.317-326
    • /
    • 2002
  • Recently a simple design method for rib-reinforced seismic steel moment connections has been proposed based on equivalent strut model. An experimental program was implemented to verify the proposed design method and to develop the schemes that will prevent the cracking at the rib tip, where stress concentration was evident. All the specimens designed by the proposed method were able to develop satisfactory connection plastic rotation of 0.04 radian. Slight beam flange trimming, in addition to rib reinforcement, pushed the plastic hinging and local buckling of the beam away from the rip tip and effectively reduced the cracking potential at the rib tip. The strut action of the rib and resulting reverse shear in the beam web were also experimentally identified through the strain gage readings.

  • PDF

Hydroforming of a Non-axisymmetric Thin-walled Tubular Component with Variable Cross Sections (가변 단면을 가지는 비대칭 얇은 관 부품의 액압성형 연구)

  • Kang, H.S.;Joo, B.D.;Hwang, T.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.368-374
    • /
    • 2015
  • Hydroforming of a non-axisymmetric thin-walled tubular component with variable cross sections was analyzed. In order to solve the sealing problem which occurred due to the thin and non-axisymmetric shape, the use of a lead patch on the punch, which had been successful in hydroforming of thin tubes, was evaluated. A lead patch was attached to the punch to solve the sealing problem, which was caused by the stress gradient in the non-axisymmetric shape. FEM and experiments were also performed to analyze these sealing problems associated with the punch shape and non-axisymmetric shape. Finally, the lead patch was attached at tube surface where intensive local strain concentration would occur to enhance the hydroformability. These methods were successfully used to fabricate non-axisymmetric thin-walled tubular component with variable cross sections that had previously failed during traditional hydroforming.