• Title/Summary/Keyword: Local Renyi Entropy

Search Result 2, Processing Time 0.019 seconds

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

Edge Detection By Fusion Using Local Information of Edges

  • Vlachos, Ioannis K.;Sergiadis, George D.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.403-406
    • /
    • 2003
  • This paper presents a robust algorithm for edge detection based on fuzzy fusion, using a novel local edge information measure based on Renyi's a-order entropy. The calculation of the proposed measure is carried out using a parametric classification scheme based on local statistics. By suitably tuning its parameters, the local edge information measure is capable of extracting different types of edges, while exhibiting high immunity to noise. The notions of fuzzy measures and the Choquet fuzzy integral are applied to combine the different sources of information obtained using the local edge information measure with different sets of parameters. The effectiveness and the robustness of the new method are demonstrated by applying our algorithm to various synthetic computer-generated and real-world images.

  • PDF