• Title/Summary/Keyword: Local Projection method

Search Result 90, Processing Time 0.023 seconds

Cryptotia recurrence lowering technique with additional acellular dermal matrix graft

  • Lee, Dongeun;Kim, Young Seok;Roh, Tai Suk;Yun, In Sik
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.3
    • /
    • pp.170-175
    • /
    • 2019
  • Background: Cryptotia is a congenital anomaly in which the upper part of the retroauricular sulcus is absent and buried underneath the temporal skin. Various surgical techniques have been reported for the correction of cryptotia following Kubo's V-Y plasty in 1933. Conventional methods using a local skin flap, skin grafting, tissue expansion, Z-plasty, and any of these combined approaches can result in skin deficiency of the upper auricle. The aim of this study was to develop a new method that improves cosmetic results and has fewer complications. Methods: This study involved four patients in whom five cryptotia deformities were corrected using V-Y plasty and Z-plasty. After elevation of the flap, acellular dermal matrix (ADM; MegaDerm) that was over 5 mm in thickness was applied to the cephalo-auricular angle and positioned to enhance the projection of the ear. Lastly, the flap was transposed to complete the repair. Results: Between January 2014 and February 2018, cryptotia correction with ADM graft was performed in four patients. None of the patients developed a recurrence of cryptotia, and there were no postoperative complications such as wound infection, seroma formation, and dehiscence. In addition, the procedures resulted in a favorable cosmetic appearance. Conclusion: Based on these findings, i.e., no recurrence and a favorable cosmetic result, when using an ADM graft, it is suggested that this technique could be an alternative method of cryptotia correction. It could also lessen donor-site morbidity when compared to autologous cartilage grafting and be more cost-effective than using cartilage from a cadaver.

Progress and Prospect of Research on Old Maps in Korea (우리나라 고지도의 연구 동향과 과제)

  • Kim, Ki-Hyuk
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.3
    • /
    • pp.301-320
    • /
    • 2007
  • In Korean academic societies, old maps has not yet been properly investigated in terms of their genealogy, classification, detailed place names, historical backgrounds and the other aspects. With publication of the bibliographies and papers on old maps reserved in museum and library, the scope of research enlarged gradually its scope from 1970s. In 1980s, with the development of theoretical geography, scientific analysis were applied to investigate the projection method of Daedongyeo-jido. The 1990s proved a prominent decade for researches. The photo-copies of old maps enabled researchers to investigate the in-depth comparative study. The more important thing is that old maps became to be powerful instrument in the research of historical geography, such as territorial disputes and marine name(東海). And county old maps compiled by region became to be regional-cultural contents of local areas. Important issues in old map research in Korean academic societies are about Cheonha-do which is unique old world map in Korea, grid-system projection in old county maps and the genealogy of Daedongyeo-jido(manuscript and block print edition). This study shows that bibliography of all old maps preserved in each library and museum should be standardized. This could enable the exchange of information of old maps between institutes. The more important thing is that conciliation of human, social and natural sciences should be applied in the research of old maps.

  • PDF

Adaptive Irregular Binning and Its Application to Video Coding Scheme Using Iterative Decoding (적응 불규칙 양자화와 반복 복호를 이용한 비디오 코딩 방식에의 응용)

  • Choi Kang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.391-399
    • /
    • 2006
  • We propose a novel low complexity video encoder, at the expense of a complex decoder, where video frames are intra-coded periodically and frames in between successive intra-coded frames are coded efficiently using a proposed irregular binning technique. We investigate a method of forming an irregular binning which is capable of quantizing any value effectively with only small number of bins, by exploiting the correlation between successive frames. This correlation is additionally exploited at the decoder, where the quality of reconstructed frames is enhanced gradually by applying POCS(projection on the convex sets). After an image frame is reconstructed with the irregular binning information at the proposed decoder, we can further improve the resulting quality by modifying the reconstructed image with motion-compensated image components from the neighboring frames which are considered to contain image details. In the proposed decoder, several iterations of these modification and re-projection steps can be invoked. Experimental results show that the performance of the proposed coding scheme is comparable to that of H.264/AVC coding in m mode. Since the proposed video coding does not require motion estimation at the encoder, it can be considered as an alternative for some versions of H.264/AVC in applications requiring a simple encoder.

2D-MELPP: A two dimensional matrix exponential based extension of locality preserving projections for dimensional reduction

  • Xiong, Zixun;Wan, Minghua;Xue, Rui;Yang, Guowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2991-3007
    • /
    • 2022
  • Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.

LiDAR Chip for Automated Geo-referencing of High-Resolution Satellite Imagery (라이다 칩을 이용한 고해상도 위성영상의 자동좌표등록)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.319-326
    • /
    • 2014
  • The accurate geo-referencing processes that apply ground control points is prerequisite for effective end use of HRSI (High-resolution satellite imagery). Since the conventional control point acquisition by human operator takes long time, demands for the automated matching to existing reference data has been increasing its popularity. Among many options of reference data, the airborne LiDAR (Light Detection And Ranging) data shows high potential due to its high spatial resolution and vertical accuracy. Additionally, it is in the form of 3-dimensional point cloud free from the relief displacement. Recently, a new matching method between LiDAR data and HRSI was proposed that is based on the image projection of whole LiDAR data into HRSI domain, however, importing and processing the large amount of LiDAR data considered as time-consuming. Therefore, we wmotivated to ere propose a local LiDAR chip generation for the HRSI geo-referencing. In the procedure, a LiDAR point cloud was rasterized into an ortho image with the digital elevation model. After then, we selected local areas, which of containing meaningful amount of edge information to create LiDAR chips of small data size. We tested the LiDAR chips for fully-automated geo-referencing with Kompsat-2 and Kompsat-3 data. Finally, the experimental results showed one-pixel level of mean accuracy.

A study on forecasting provinces-specific fertility for Korea (시도별 출산력 예측에 대한 연구)

  • Kim, Soon-Young;Oh, Jinho
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.229-263
    • /
    • 2019
  • The Korean fertility rate has been declining rapidly since 2000 with the fertility rate among provinces following a uniform tendency. In particular, the province-specific fertility rate is an essential tool for local governments to prepare local policies for low fertility aging policy, education and welfare policies. However, there is limitation on how to reflect different trends on the province-specific fertility rate because the KOSTAT's (2017) province-specific fertility rate projection estimates information use the national average birth rate date of vital statistics for the last 10 years (5 years). In this study, we propose an improvement plan that simultaneously considers important stable pattern maintenance and provincial fertility rate differentiation for an annual birth rate estimation. The method proposed in this study (proposal 1 and 2) can reflect birth rate changes from past to present and national and provincial differences by age that use time series data of the annual fertility rate. Proposal 3 also reflects the unique fertility rate trend from the past to the present by age according to province regardless of the relationship with the national trend. Therefore, it is preferable to use a relationship to the national rate when predicting the birth rate, as in proposals 1 and 2 because the national and the provincial fertility rate pattern are similar. These proposals show improved stability in terms of age-specific fertility rates.

Automatic Lower Extremity Vessel Extraction based on Bone Elimination Technique in CT Angiography Images (CT 혈관 조영 영상에서 뼈 소거법 기반의 하지 혈관 자동 추출)

  • Kim, Soo-Kyung;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.967-976
    • /
    • 2009
  • In this paper, we propose an automatic lower extremity vessel extraction based on rigid registration and bone elimination techniques in CT and CT angiography images. First, automatic partitioning of the lower extremity based on the anatomy is proposed to consider the local movement of the bone. Second, rigid registration based on distance map is performed to estimate the movement of the bone between CT and CT angiography images. Third, bone elimination and vessel masking techniques are proposed to remove bones in CT angiography image and to prevent the vessel near to bone from eroding. Fourth, post-processing based on vessel tracking is proposed to reduce the effect of misalignment and noises like a cartilage. For the evaluation of our method, we performed the visual inspection, accuracy measures and processing time. For visual inspection, the results of applying general subtraction, registered subtraction and proposed method are compared using volume rendering and maximum intensity projection. For accuracy evaluation, intensity distributions of CT angiography image, subtraction based method and proposed method are analyzed. Experimental result shows that bones are accurately eliminated and vessels are robustly extracted without the loss of other structure. The total processing time of thirteen patient datasets was 40 seconds on average.

A License Plate Recognition System Robust to Vehicle Location and Viewing Angle (영상 내 차량의 위치 및 촬영 각도에 강인한 차량 번호판 인식 시스템)

  • Hong, Sungeun;Hwang, Sungsoo;Kim, Seongdae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.113-123
    • /
    • 2012
  • Recently, various attempts have been made to apply Intelligent Transportation System under various environments and conditions. Consequently, an accurate license plate recognition regardless of vehicle location and viewing angle is required. In this paper, we propose a novel license plate recognition system which exploits a) the format of license plates to remove false candidates of license plates and to extract characters in license plates and b) the characteristics of Hangul for accurate character recognition. In order to eliminate false candidates of license plates, the proposed method first aligns the candidates of license plates horizontally, and compares the position and the shape of objects in each candidate with the prior information of license plates provided by Korean Ministry of Construction & Transportation. The prior information such as aspect ratio, background color, projection image is also used to extract characters in license plates accurately applying an improved local binarization considering luminance variation of license plates. In case of recognizing Hangul in license plates, they are initially grouped according to their shape similarity. Then a super-class method, a hierarchical analysis based on key feature points is applied to recognize Hangul accurately. The proposed method was verified with high recognition rate regardless of background image, which eventually proves that the proposed LPR system has high performance regardless of the vehicle location or viewing angle.

Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face (터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안)

  • Chuyen Pham;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.508-518
    • /
    • 2023
  • This paper presents a new approach for the automatic mapping of discontinuities in a tunnel face based on its 3D digital model reconstructed by LiDAR scan or photogrammetry techniques. The main idea revolves around the identification of discontinuity areas in the 3D digital model of a tunnel face by segmenting its 2D projected images using a deep-learning semantic segmentation model called U-Net. The proposed deep learning model integrates various features including the projected RGB image, depth map image, and local surface properties-based images i.e., normal vector and curvature images to effectively segment areas of discontinuity in the images. Subsequently, the segmentation results are projected back onto the 3D model using depth maps and projection matrices to obtain an accurate representation of the location and extent of discontinuities within the 3D space. The performance of the segmentation model is evaluated by comparing the segmented results with their corresponding ground truths, which demonstrates the high accuracy of segmentation results with the intersection-over-union metric of approximately 0.8. Despite still being limited in training data, this method exhibits promising potential to address the limitations of conventional approaches, which only rely on normal vectors and unsupervised machine learning algorithms for grouping points in the 3D model into distinct sets of discontinuities.

Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System (MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출)

  • Choi, Wonjun;Park, Soyeon;Choi, Yoonjo;Hong, Seunghwan;Kim, Namhoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1361-1371
    • /
    • 2021
  • Among smart city services, the crime and disaster prevention sector accounted for the highest 24% in 2018. The most important platform for providing real-time situation information is CCTV (Closed-Circuit Television). Therefore, it is essential to create the actual CCTV surveillance coverage to maximize the usability of CCTV. However, the amount of CCTV installed in Korea exceeds one million units, including those operated by the local government, and manual identification of CCTV coverage is a time-consuming and inefficient process. This study proposed a method to efficiently construct CCTV's actual surveillance coverage and reduce the time required for the decision-maker to manage the situation. For this purpose, first, the exterior orientation parameters and focal lengths of the pre-installed CCTV cameras, which are difficult to access, were calculated using the point cloud data of the MMS (Mobile Mapping System), and the FOV (Field of View) was calculated accordingly. Second, using the FOV result calculated in the first step, CCTV's actual surveillance coverage area was constructed with 1 m, 2 m, 3 m, 5 m, and 10 m grid interval considering the occluded regions caused by the buildings. As a result of applying our approach to 5 CCTV images located in Uljin-gun, Gyeongsnagbuk-do the average re-projection error was about 9.31 pixels. The coordinate difference between calculated CCTV and location obtained from MMS was about 1.688 m on average. When the grid length was 3 m, the surveillance coverage calculated through our research matched the actual surveillance obtained from visual inspection with a minimum of 70.21% to a maximum of 93.82%.