• Title/Summary/Keyword: Local PCA

Search Result 113, Processing Time 0.023 seconds

Speaker Identification Using GMM Based on Local Fuzzy PCA (국부 퍼지 클러스터링 PCA를 갖는 GMM을 이용한 화자 식별)

  • Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.159-166
    • /
    • 2003
  • To reduce the high dimensionality required for training of feature vectors in speaker identification, we propose an efficient GMM based on local PCA with Fuzzy clustering. The proposed method firstly partitions the data space into several disjoint clusters by fuzzy clustering, and then performs PCA using the fuzzy covariance matrix in each cluster. Finally, the GMM for speaker is obtained from the transformed feature vectors with reduced dimension in each cluster. Compared to the conventional GMM with diagonal covariance matrix, the proposed method needs less storage and shows faster result, under the same performance.

  • PDF

Face Recognition using Modified Local Directional Pattern Image (Modified Local Directional Pattern 영상을 이용한 얼굴인식)

  • Kim, Dong-Ju;Lee, Sang-Heon;Sohn, Myoung-Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.205-208
    • /
    • 2013
  • Generally, binary pattern transforms have been used in the field of the face recognition and facial expression, since they are robust to illumination. Thus, this paper proposes an illumination-robust face recognition system combining an MLDP, which improves the texture component of the LDP, and a 2D-PCA algorithm. Unlike that binary pattern transforms such as LBP and LDP were used to extract histogram features, the proposed method directly uses the MLDP image for feature extraction by 2D-PCA. The performance evaluation of proposed method was carried out using various algorithms such as PCA, 2D-PCA and Gabor wavelets-based LBP on Yale B and CMU-PIE databases which were constructed under varying lighting condition. From the experimental results, we confirmed that the proposed method showed the best recognition accuracy.

Local Appearance-based Face Recognition Using SVM and PCA (SVM과 PCA를 이용한 국부 외형 기반 얼굴 인식 방법)

  • Park, Seung-Hwan;Kwak, No-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.54-60
    • /
    • 2010
  • The local appearance-based method is one of the face recognition methods that divides face image into small areas and extracts features from each area of face image using statistical analysis. It collects classification results of each area and decides identity of a face image using a voting scheme by integrating classification results of each area of a face image. The conventional local appearance-based method divides face images into small pieces and uses all the pieces in recognition process. In this paper, we propose a local appearance-based method that makes use of only the relatively important facial components. The proposed method detects the facial components such as eyes, nose and mouth that differs much from person to person. In doing so, the proposed method detects exact locations of facial components using support vector machines (SVM). Based on the detected facial components, a number of small images that contain the facial parts are constructed. Then it extracts features from each facial component image using principal components analysis (PCA). We compared the performance of the proposed method to those of the conventional methods. The results show that the proposed method outperforms the conventional local appearance-based method while preserving the advantages of the conventional local appearance-based method.

A new swarm intelligent optimization algorithm: Pigeon Colony Algorithm (PCA)

  • Yi, Ting-Hua;Wen, Kai-Fang;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.425-448
    • /
    • 2016
  • In this paper, a new Pigeon Colony Algorithm (PCA) based on the features of a pigeon colony flying is proposed for solving global numerical optimization problems. The algorithm mainly consists of the take-off process, flying process and homing process, in which the take-off process is employed to homogenize the initial values and look for the direction of the optimal solution; the flying process is designed to search for the local and global optimum and improve the global worst solution; and the homing process aims to avoid having the algorithm fall into a local optimum. The impact of parameters on the PCA solution quality is investigated in detail. There are low-dimensional functions, high-dimensional functions and systems of nonlinear equations that are used to test the global optimization ability of the PCA. Finally, comparative experiments between the PCA, standard genetic algorithm and particle swarm optimization were performed. The results showed that PCA has the best global convergence, smallest cycle indexes, and strongest stability when solving high-dimensional, multi-peak and complicated problems.

MRS Pattern Classification Using Fusion Method based on SpPCA and MLP (SpPCA와 MLP에 기반을 둔 응합법칙에 의한 MRS 패턴분류)

  • Song Chang kyu;Lee Dae jong;Jeon Byeong seok;Ryu Jeong woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.922-929
    • /
    • 2005
  • In this paper, we propose the MRS p:Ittern classification techniques by the fusion scheme based on the SpPCA and MLP. A conventional PCA teclulique for the dimension reduction has the problem that it can't find a optimal transformation matrix if the property of input data is nonlinear. To overcome this drawback we extract features by the SpPCA technique which use the local patterns rather than whole patterns. In a next classification step, individual classifier based on MLP calculates the similarity of each class for local features. Finally, MRS patterns is classified by the fusion scheme to effectively combine the individual information. As the simulation results to verify the effectiveness, the proposed method showed more improved classification results than conventional methods.

An Improved Robust Fuzzy Principal Component Analysis (잡음 민감성이 개선된 퍼지 주성분 분석)

  • Heo, Gyeong-Yong;Woo, Young-Woon;Kim, Seong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1093-1102
    • /
    • 2010
  • Principal component analysis (PCA) is a well-known method for dimension reduction while maintaining most of the variation in data. Although PCA has been applied to many areas successfully, it is sensitive to outliers. Several variants of PCA have been proposed to resolve the problem and, among the variants, robust fuzzy PCA (RF-PCA) demonstrated promising results. RF-PCA uses fuzzy memberships to reduce the noise sensitivity. However, there are also problems in RF-PCA and the convergence property is one of them. RF-PCA uses two different objective functions to update memberships and principal components, which is the main reason of the lack of convergence property. The difference between two functions also slows the convergence and deteriorates the solutions of RF-PCA. In this paper, a variant of RF-PCA, called RF-PCA2, is proposed. RF-PCA2 uses an integrated objective function both for memberships and principal components. By using alternating optimization, RF-PCA2 is guaranteed to converge on a local optimum. Furthermore, RF-PCA2 converges faster than RF-PCA and the solutions found are more similar to the desired solutions than those of RF-PCA. Experimental results also support this.

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.

Face Recognition using LDA and Local MLP (LDA와 Local MLP를 이용한 얼굴 인식)

  • Lee Dae-Jong;Choi Gee-Seon;Cho Jae-Hoon;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.367-371
    • /
    • 2006
  • Multilayer percepteon has the advantage of learning their optimal parameters and efficiency. However, MLP shows some drawbacks when dealing with high dimensional data within the input space. Also, it Is very difficult to find the optimal parameters when the input data are highly correlated such as large scale face dataset. In this paper, we propose a novel technique for face recognition based on LDA and local MLP. To resolve the main drawback of MLP, we calculate the reduced features by LDA in advance. And then, we construct a local MLP per group consisting of subset of facedatabase to find its optimal learning parameters rather than using whole faces. Finally, we designed the face recognition system combined with the local MLPs. From various experiments, we obtained better classification performance in comparison with the results produced by conventional methods such as PCA and LDA.

Feature Extraction and Classification of High Dimensional Biomedical Spectral Data (고차원을 갖는 생체 스펙트럼 데이터의 특징추출 및 분류기법)

  • Cho, Jae-Hoon;Park, Jin-Il;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.297-303
    • /
    • 2009
  • In this paper, we propose the biomedical spectral pattern classification techniques by the fusion scheme based on the SpPCA and MLP in extended feature space. A conventional PCA technique for the dimension reduction has the problem that it can't find an optimal transformation matrix if the property of input data is nonlinear. To overcome this drawback, we extract features by the SpPCA technique in extended space which use the local patterns rather than whole patterns. In the classification step, individual classifier based on MLP calculates the similarity of each class for local features. Finally, biomedical spectral patterns is classified by the fusion scheme to effectively combine the individual information. As the simulation results to verify the effectiveness, the proposed method showed more improved classification results than conventional methods.

A Study on the Vulnerability Assessment for Agricultural Infrastructure using Principal Component Analysis (주성분 분석을 이용한 농업생산기반의 재해 취약성 평가에 관한 연구)

  • Kim, Sung Jae;Kim, Sung Min;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The purpose of this study was to evaluate climate change vulnerability over the agricultural infrastructure in terms of flood and drought using principal component analysis. Vulnerability was assessed using vulnerability resilience index (VRI) which combines climate exposure, sensitivity, and adaptive capacity. Ten flood proxy variables and six drought proxy variables for the vulnerability assessment were selected by opinions of researchers and experts. The statistical data on 16 proxy variables for the local governments (Si, Do) were collected. To identify major variables and to explain the trend in whole data set, principal component analysis (PCA) was conducted. The result of PCA showed that the first 3 principal components explained approximately 83 % and 89 % of the total variance for the flood and drought, respectively. VRI assessment for the local governments based on the PCA results indicated that provinces where having the relatively large cultivation areas were categorized as vulnerable to climate change.