• Title/Summary/Keyword: Local Minima

Search Result 236, Processing Time 0.027 seconds

A New Technique to Escape Local Minimum in Artificial Potential Field Based Path Planning

  • Park, Min-Gyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1876-1885
    • /
    • 2003
  • The artificial potential field (APF) methods provide simple and efficient motion planners for practical purposes. However, these methods have a local minimum problem, which can trap an object before reaching its goal. The local minimum problem is sometimes inevitable when an object moves in unknown environments, because the object cannot predict local minima before it detects obstacles forming the local minima. The avoidance of local minima has been an active research topic in the potential field based path planing. In this study, we propose a new concept using a virtual obstacle to escape local minima that occur in local path planning. A virtual obstacle is located around local minima to repel an object from local minima. We also propose the discrete modeling method for the modeling of arbitrary shaped objects used in this approach. This modeling method is adaptable for real-time path planning because it is reliable and provides lower complexity.

The Improved Watershed Algorithm using Adaptive Local Threshold (적응적 지역 임계치를 이용한 개선된 워터쉐드 알고리즘)

  • Lee Seok-Hee;Kwon Dong-Jin;Kwak Nae-Joung;Ahn Jae-Hyeong
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.891-894
    • /
    • 2004
  • This paper proposes an improved image segmentation algorithm by the watershed algorithm based on the local adaptive threshold on local minima search and the fixing threshold on label allocation. The previous watershed algorithm generates the problem of over-segmentation. The over-segmentation makes the boundary in the inaccuracy region by occurring around the object. In order to solve those problems we quantize the input color image by the vector quantization, remove noise and find the gradient image. We sorted local minima applying the local adaptive threshold on local minima search of the input color image. The simulation results show that the proposed algorithm controls over-segmentation and makes the fine boundary around segmented region applying the fixing threshold based on sorted local minima on label allocation.

  • PDF

Parameter Selecting in Artificial Potential Functions for Local Path Planning

  • Kim, Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.339-346
    • /
    • 2005
  • Artificial potential field (APF) is a widely used method for local path planning of autonomous mobile robot. So far, many different types of APF have been implemented. Once the artificial potential functions are selected, how to choose appropriate parameters of the functions is also an important work. In this paper, a detailed analysis is given on how to choose proper parameters of artificial functions to eliminate free path local minima and avoid collision between robots and obstacles. Two kinds of potential functions: Gaussian type and Quadratic type of potential functions are used to solve the above local minima problem respectively. To avoid local minima occurred in realistic situations such as 1) a case that the potential of the goal is affected excessively by potential of the obstacle, 2) a case that the potential of the obstacle is affected excessively by potential of the goal, the design guidelines for selecting appropriate parameters of potential functions are proposed.

Real-time obstacle avoidance for redundant manipulator (여유 자유도 로봇의 실시간 충돌 회피)

  • 조웅장;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1140-1143
    • /
    • 1996
  • A new approach based on artificial potential function is proposed for the obstacle avoidance of redundant manipulators. Unlike the so-called "global" path planning method, which requires expensive computation for the path search before the manipulator starts to move, this new approach, "local" path planning, researches the path in real-time using the local distance information. Previous use of artificial potential function has exhibited local minima in some complex environments. This thesis proposes a potential function that has no local minima even for a cluttered environment. This potential function has been implemented for the collision avoidance of a redundant robot in Simulation. The simulation also employ an algorithm that eliminates collisions with obstacles by calculating the repulsive potential exerted on links, based on the shortest distance to object.

  • PDF

Past Block Matching Motion Estimation based on Multiple Local Search Using Spatial Temporal Correlation (시공간적 상관성을 이용한 국소 다중 탐색기반 고속 블록정합 움직임 추정)

  • 조영창;남혜영;이태홍
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.356-364
    • /
    • 2000
  • Block based fast motion estimation algorithm use the fixed search pattern to reduce the search point, and are based on the assumption that the error in the mean absolute error space monotonically decreases to the global minimum. Therefore, in case of many local minima in a search region we are likely to find local minima instead of the global minimum and highly rely on the initial search points. This situation is evident in the motion boundary. In this paper we define the candidate regions within the search region using the motion information of the neighbor blocks and we propose the multiple local search method (MLSM) which search for the solution throughout the candidate regions to reduce the possibilities of isolation to the local minima. In the MLSM we mark the candidate region in the search point map and we avoid to search the candidate regions already visited to reduce the calculation. In the simulation results the proposed method shows more excellent results than that of other gradient based method especially in the search of motion boundary. Especially, in PSNR the proposed method obtains similar estimate accuracy with the significant reduction of search points to that of full search.

  • PDF

Hierarchical Cluster Analysis Histogram Thresholding with Local Minima

  • Sengee, Nyamlkhagva;Radnaabazar, Chinzorig;Batsuuri, Suvdaa;Tsedendamba, Khurel-Ochir;Telue, Berekjan
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • In this study, we propose a method which is based on "Image segmentation by histogram thresholding using hierarchical cluster analysis"/HCA/ and "A nonparametric approach for histogram segmentation"/NHS/. HCA method uses that all histogram bins are one cluster then it reduces cluster numbers by using distance metric. Because this method has too many clusters, it is more computation. In order to eliminate disadvantages of "HCA" method, we used "NHS" method. NHS method finds all local minima of histogram. To reduce cluster number, we use NHS method which is fast. In our approach, we combine those two methods to eliminate disadvantages of Arifin method. The proposed method is not only less computational than "HCA" method because combined method has few clusters but also it uses local minima of histogram which is computed by "NHS".

The Real-time Path Planning Using Artificial Potential Field and Simulated Annealing for Mobile Robot (Artificial Potential Field 와 Simulated Annealing을 이용한 이동로봇의 실시간 경로계획)

  • 전재현;박민규;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.256-256
    • /
    • 2000
  • In this parer, we present a real-time path planning algorithm which is integrated the artificial potential field(APF) and simulated annealing(SA) methods for mobile robot. The APF method in path planning has gained popularity since 1990's. It doesn't need the modeling of the complex configuration space of robot, and is easy to apply the path planning with simple computation. However, there is a major problem with APF method. It is the formation of local minima that can trap the robot before reaching its goal. So, to provide local minima recovery, we apply the SA method. The effectiveness of the proposed algorithm is verified through simulation.

  • PDF

A Mobile Robot Navigation Method using Virtual Obstacle in indoor environment

  • Joe, Woong-Ryul;Park, Jung-Min;Park, Gui-Tae;Oh, Sang-Rok;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.59.6-59
    • /
    • 2001
  • A virtual obstacle method for escaping local minima encountered by sonar-based mobile robot navigation used in real-time obstacle avoidance is presented. The new algorithm judges the mobile robot falls into local minima and helps the mobile robot escape from Et, which regards a concave obstacle as convex or flat one, virtual obstacle method. In the algorithm, it starts to make virtual-obstacle when the mobile robot meets a certain condition, then the robot mores back slowly taking inside area of local minima as obstacle gradually The new algorithm is simulated. The experimental results are presented to demonstrate the usefulness of the method.

  • PDF

An Optimization Method Wsing Simulated Annealing for Universal Learning Network

  • Murata, Junichi;Tajiri, Akihito;Hirasawa, Kotaro;Ohbayashi, Masanao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.183-186
    • /
    • 1995
  • A method is presented for optimization of Universal Learning Networks (ULN), where, together with gradient method, Simulated Annealing (SA) is employed to elude local minima. The effectiveness of the method is shown by its application to control of a crane system.

  • PDF

Performance improvement of single-layer neural network with feedback by analyzing the computational energy function (계산 에너지 함수 분석을 통한 궤환성을 갖는 단층신경회로망의 성능개선)

  • 고경희;강민제
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.54-60
    • /
    • 1997
  • A new method to neglect the third term of the computational energy expression in the single-layer neural network with feedback is introduced. The system often converges to local minima instead of to global minima, because the computational energy is not matched exactly with the cost function being optimized. One of the factors causing these tow functions different is the third term of computational enegy expression. Regarding this third term energy very small, it is always ignored in designing the system. However, a sthe system growing, this third term energy is also growing and this grown term makes the computational energy function much different from the cost function. In results of differency between two functions, system converges to local minima more than before. In this paper, a new method to neglect te third term energy is introduced, so that the system with tis new method has been imroved.

  • PDF