As we encounter the global and localized era, the development operations on a regional level are in active promotion. This manuscript has been completed with the purpose of probing for course of action in lifelong learning movement in terms of activating and developing of local communities. For this, the comparative analysis of practiced cases in America's community school movement, Japan's movement for establishing lifelong learning village and Sweden's study circle movement have been made. For the analytical frame of the comparison, the actual results on background of promotion, themes for practice, details of practice, methods for practice of local community centered lifelong learning movement have been applied. As a result of analysis, the local community centered lifelong learning movement has been promoted to break each country's social and economic crisis and to activate the local community. The promotion of each operation has been accomplished with the support of specific organization and the participants were the citizens of the local community. Also, the details of practice are composed of operating the people-centered lifelong learning program, cooperative learning by local citizens and local community realization activity. The details of education is closely related with the life of learners. Therefore, the lifelong movement for the activation of local community hereafter should be promoted based on the coherence of local community, should be able to contain the actual life of the citizens and should be practiced as a process of forming the lifelong learning group at concerned local community through a democratic learning process.
Purpose Local governments in each region actively hold local festivals for the purpose of promoting the region and revitalizing the local economy. Existing studies related to local festivals have been actively conducted in tourism and related academic fields. Empirical studies to understand the effects of latent variables on local festivals and studies to analyze the regional economic impacts of festivals occupy a large proportion. Despite of practical need, since few researches have been conducted to predict the number of visitors, one of the criteria for evaluating the performance of local festivals, this study developed a model for predicting the number of visitors through various observed variables using a machine learning algorithm and derived its implications. Design/methodology/approach For a total of 593 festivals held in 2018, 6 variables related to the region considering population size, administrative division, and accessibility, and 15 variables related to the festival such as the degree of publicity and word of mouth, invitation singer, weather and budget were set for the training data in machine learning algorithm. Since the number of visitors is a continuous numerical data, random forest, Adaboost, and linear regression that can perform regression analysis among the machine learning algorithms were used. Findings This study confirmed that a prediction of the number of visitors to local festivals is possible using a machine learning algorithm, and the possibility of using machine learning in research in the tourism and related academic fields, including the study of local festivals, was captured. From a practical point of view, the model developed in this study is used to predict the number of visitors to the festival to be held in the future, so that the festival can be evaluated in advance and the demand for related facilities, etc. can be utilized. In addition, the RReliefF rank result can be used. Considering this, it will be possible to improve the existing local festivals or refer to the planning of a new festival.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.1
/
pp.30-45
/
2024
This study introduces an effective method for predicting individual local tax delinquencies using prevalent machine learning and deep learning algorithms. The evaluation of credit risk holds great significance in the financial realm, impacting both companies and individuals. While credit risk prediction has been explored using statistical and machine learning techniques, their application to tax arrears prediction remains underexplored. We forecast individual local tax defaults in Republic of Korea using machine and deep learning algorithms, including convolutional neural networks (CNN), long short-term memory (LSTM), and sequence-to-sequence (seq2seq). Our model incorporates diverse credit and public information like loan history, delinquency records, credit card usage, and public taxation data, offering richer insights than prior studies. The results highlight the superior predictive accuracy of the CNN model. Anticipating local tax arrears more effectively could lead to efficient allocation of administrative resources. By leveraging advanced machine learning, this research offers a promising avenue for refining tax collection strategies and resource management.
Few-shot learning is a sub-area of machine learning problems, which aims to classify target images that only contain a few labeled samples for training. As a representative few-shot learning method, the Prototypical network has been received much attention due to its simplicity and promising results. However, the Prototypical network uses the sample mean of samples from the same class as the prototypes of that class, which easily results in learning uncharacteristic features in the low-data scenery. In this study, we propose to use local descriptors (i.e., patches along the channel within feature maps) from the same class to explicitly obtain more representative prototypes for Prototypical Network so that significant intra-class feature information can be maintained and thus improving the classification performance on few-shot learning tasks. Experimental results on various benchmark datasets including mini-ImageNet, CUB-200-2011, and tiered-ImageNet show that the proposed method can learn more discriminative intra-class features by the local descriptors and obtain more generic prototype representations under the few-shot setting.
Existing science education that excludes narrative thinking impedes the understanding of the context of workbook content. The object of this research is to develop a storytelling-learning program based on narrative thinking to elevate learners' interest in science and expand their inventive problem-solving abilities. Following an analysis of the current Korean curriculum, eight types of storytelling materials that utilize local content were developed for grades 7-9. The learning program used quest storytelling and was designed such that learning activities such as investigation, discussion, and experimentation were included in the process of solving each quest. Learners experienced an interest in storytelling learning resulting from participation in this storytelling-learning program. Moreover, learners demonstrated inventive problem-solving abilities in the process of completing the stories. During the process of assembling the storytelling materials, the students interacted with enthusiasm and generated ideas. The teachers indicated a positive feedback to the storytelling program as a new attempt to stimulate learners' interests. In the future, with continuous development and application, storytelling-science-learning programs that base science learning on narrative thinking are expected to be successful.
Purpose The purpose of this study is to develop intelligent vehicle parking distribution system based on LoRa network at the circumstance of traffic congestion during cultural festival in a local city. This paper proposes a parking dispatch and distribution system using a Q-learning algorithm to rapidly disperse traffics that increases suddenly because of in-bound traffics from the outside of a city in the real-time base as well as to increase parking probability in a parking lot which is widely located in a city. Design/methodology/approach The system get information on realtime-base from the sensor network of IoT (LoRa network). It will contribute to solve the sudden increase in traffic and parking bottlenecks during local cultural festival. We applied the simulation system with Queuing model to the Yudeung Festival in Jinju, Korea. We proposed a Q-learning algorithm that could change the learning policy by setting the acceptability value of each parking lot as a threshold from the Jinju highway IC (Interchange) to the 7 parking lots. LoRa Network platform supports to browse parking resource information to each vehicle in realtime. The system updates Q-table periodically using Q-learning algorithm as soon as get information from parking lots. The Queuing Theory with Poisson arrival distribution is used to get probability distribution function. The Dijkstra algorithm is used to find the shortest distance. Findings This paper suggest a simulation test to verify the efficiency of Q-learning algorithm at the circumstance of high traffic jam in a city during local festival. As a result of the simulation, the proposed algorithm performed well even when each parking lot was somewhat saturated. When an intelligent learning system such as an O-learning algorithm is applied, it is possible to more effectively distribute the vehicle to a lot with a high parking probability when the vehicle inflow from the outside rapidly increases at a specific time, such as a local city cultural festival.
Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.7
/
pp.1705-1720
/
2013
Human face gender recognition requires fast image processing with high accuracy. Existing face gender recognition methods used traditional local features and machine learning methods have shortcomings of low accuracy or slow speed. In this paper, a new framework for face gender recognition to reach fast face gender recognition is proposed, which is based on Local Ternary Pattern (LTP) and Extreme Learning Machine (ELM). LTP is a generalization of Local Binary Pattern (LBP) that is in the presence of monotonic illumination variations on a face image, and has high discriminative power for texture classification. It is also more discriminate and less sensitive to noise in uniform regions. On the other hand, ELM is a new learning algorithm for generalizing single hidden layer feed forward networks without tuning parameters. The main advantages of ELM are the less stringent optimization constraints, faster operations, easy implementation, and usually improved generalization performance. The experimental results on public databases show that, in comparisons with existing algorithms, the proposed method has higher precision and better generalization performance at extremely fast learning speed.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.14
no.3
/
pp.209-215
/
2014
Sequence tagging is the task of predicting frame-wise labels for a given input sequence and has important applications to diverse domains. Conventional methods such as maximum likelihood (ML) learning matches global features in empirical and model distributions, rather than local features, which directly translates into frame-wise prediction errors. Recent probabilistic sequence models such as conditional random fields (CRFs) have achieved great success in a variety of situations. In this paper, we introduce a novel discriminative CRF learning algorithm to minimize local feature mismatches. Unlike overall data fitting originating from global feature matching in ML learning, our approach reduces the total error over all frames in a sequence. We also provide an efficient gradient-based learning method via gradient forward-backward recursion, which requires the same computational complexity as ML learning. For several real-world sequence tagging problems, we empirically demonstrate that the proposed learning algorithm achieves significantly more accurate prediction performance than standard estimators.
The Transactions of the Korea Information Processing Society
/
v.6
no.5
/
pp.1303-1311
/
1999
In order to learn in dynamic environments, reinforcement learning algorithms like Q-learning, TD(0)-learning, TD(λ)-learning have been proposed. however, most of them have a drawback of very slow learning because the reinforcement value is given when they reach their goal state. In this thesis, we have proposed a reinforcement learning method that can approximate fast to the goal state in maze environments. The proposed reinforcement learning method is separated into global learning and local learning, and then it executes learning. Global learning is a learning that uses the replacing eligibility trace method to search the goal state. In local learning, it propagates the goal state value that has been searched through global learning to neighboring sates, and then searches goal state in neighboring states. we can show through experiments that the reinforcement learning method proposed in this thesis can find out an optimal solution faster than other reinforcement learning methods like Q-learning, TD(o)learning and TD(λ)-learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.