• 제목/요약/키워드: Local Learning

Search Result 1,009, Processing Time 0.193 seconds

A Probe for Local Community Centered Lifelong Learning Movement's Course of Action (지역사회 중심 평생학습운동의 추진방향 탐색: 외국의 평생학습운동 사례를 중심으로)

  • Yang Heug-Kweun;Choi Sang-Keun
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.1
    • /
    • pp.109-122
    • /
    • 2006
  • As we encounter the global and localized era, the development operations on a regional level are in active promotion. This manuscript has been completed with the purpose of probing for course of action in lifelong learning movement in terms of activating and developing of local communities. For this, the comparative analysis of practiced cases in America's community school movement, Japan's movement for establishing lifelong learning village and Sweden's study circle movement have been made. For the analytical frame of the comparison, the actual results on background of promotion, themes for practice, details of practice, methods for practice of local community centered lifelong learning movement have been applied. As a result of analysis, the local community centered lifelong learning movement has been promoted to break each country's social and economic crisis and to activate the local community. The promotion of each operation has been accomplished with the support of specific organization and the participants were the citizens of the local community. Also, the details of practice are composed of operating the people-centered lifelong learning program, cooperative learning by local citizens and local community realization activity. The details of education is closely related with the life of learners. Therefore, the lifelong movement for the activation of local community hereafter should be promoted based on the coherence of local community, should be able to contain the actual life of the citizens and should be practiced as a process of forming the lifelong learning group at concerned local community through a democratic learning process.

  • PDF

Development of a Model to Predict the Number of Visitors to Local Festivals Using Machine Learning (머신러닝을 활용한 지역축제 방문객 수 예측모형 개발)

  • Lee, In-Ji;Yoon, Hyun Shik
    • The Journal of Information Systems
    • /
    • v.29 no.3
    • /
    • pp.35-52
    • /
    • 2020
  • Purpose Local governments in each region actively hold local festivals for the purpose of promoting the region and revitalizing the local economy. Existing studies related to local festivals have been actively conducted in tourism and related academic fields. Empirical studies to understand the effects of latent variables on local festivals and studies to analyze the regional economic impacts of festivals occupy a large proportion. Despite of practical need, since few researches have been conducted to predict the number of visitors, one of the criteria for evaluating the performance of local festivals, this study developed a model for predicting the number of visitors through various observed variables using a machine learning algorithm and derived its implications. Design/methodology/approach For a total of 593 festivals held in 2018, 6 variables related to the region considering population size, administrative division, and accessibility, and 15 variables related to the festival such as the degree of publicity and word of mouth, invitation singer, weather and budget were set for the training data in machine learning algorithm. Since the number of visitors is a continuous numerical data, random forest, Adaboost, and linear regression that can perform regression analysis among the machine learning algorithms were used. Findings This study confirmed that a prediction of the number of visitors to local festivals is possible using a machine learning algorithm, and the possibility of using machine learning in research in the tourism and related academic fields, including the study of local festivals, was captured. From a practical point of view, the model developed in this study is used to predict the number of visitors to the festival to be held in the future, so that the festival can be evaluated in advance and the demand for related facilities, etc. can be utilized. In addition, the RReliefF rank result can be used. Considering this, it will be possible to improve the existing local festivals or refer to the planning of a new festival.

Deep Learning-based Delinquent Taxpayer Prediction: A Scientific Administrative Approach

  • YongHyun Lee;Eunchan Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.30-45
    • /
    • 2024
  • This study introduces an effective method for predicting individual local tax delinquencies using prevalent machine learning and deep learning algorithms. The evaluation of credit risk holds great significance in the financial realm, impacting both companies and individuals. While credit risk prediction has been explored using statistical and machine learning techniques, their application to tax arrears prediction remains underexplored. We forecast individual local tax defaults in Republic of Korea using machine and deep learning algorithms, including convolutional neural networks (CNN), long short-term memory (LSTM), and sequence-to-sequence (seq2seq). Our model incorporates diverse credit and public information like loan history, delinquency records, credit card usage, and public taxation data, offering richer insights than prior studies. The results highlight the superior predictive accuracy of the CNN model. Anticipating local tax arrears more effectively could lead to efficient allocation of administrative resources. By leveraging advanced machine learning, this research offers a promising avenue for refining tax collection strategies and resource management.

Intra-class Local Descriptor-based Prototypical Network for Few-Shot Learning

  • Huang, Xi-Lang;Choi, Seon Han
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.52-60
    • /
    • 2022
  • Few-shot learning is a sub-area of machine learning problems, which aims to classify target images that only contain a few labeled samples for training. As a representative few-shot learning method, the Prototypical network has been received much attention due to its simplicity and promising results. However, the Prototypical network uses the sample mean of samples from the same class as the prototypes of that class, which easily results in learning uncharacteristic features in the low-data scenery. In this study, we propose to use local descriptors (i.e., patches along the channel within feature maps) from the same class to explicitly obtain more representative prototypes for Prototypical Network so that significant intra-class feature information can be maintained and thus improving the classification performance on few-shot learning tasks. Experimental results on various benchmark datasets including mini-ImageNet, CUB-200-2011, and tiered-ImageNet show that the proposed method can learn more discriminative intra-class features by the local descriptors and obtain more generic prototype representations under the few-shot setting.

Development of Storytelling Program for Science Learning Utilizing Local Myths as Contents

  • Kang, Kyunghee
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.55-63
    • /
    • 2014
  • Existing science education that excludes narrative thinking impedes the understanding of the context of workbook content. The object of this research is to develop a storytelling-learning program based on narrative thinking to elevate learners' interest in science and expand their inventive problem-solving abilities. Following an analysis of the current Korean curriculum, eight types of storytelling materials that utilize local content were developed for grades 7-9. The learning program used quest storytelling and was designed such that learning activities such as investigation, discussion, and experimentation were included in the process of solving each quest. Learners experienced an interest in storytelling learning resulting from participation in this storytelling-learning program. Moreover, learners demonstrated inventive problem-solving abilities in the process of completing the stories. During the process of assembling the storytelling materials, the students interacted with enthusiasm and generated ideas. The teachers indicated a positive feedback to the storytelling program as a new attempt to stimulate learners' interests. In the future, with continuous development and application, storytelling-science-learning programs that base science learning on narrative thinking are expected to be successful.

A Simulation of Vehicle Parking Distribution System for Local Cultural Festival with Queuing Theory and Q-Learning Algorithm (대기행렬이론과 Q-러닝 알고리즘을 적용한 지역문화축제 진입차량 주차분산 시뮬레이션 시스템)

  • Cho, Youngho;Seo, Yeong Geon;Jeong, Dae-Yul
    • The Journal of Information Systems
    • /
    • v.29 no.2
    • /
    • pp.131-147
    • /
    • 2020
  • Purpose The purpose of this study is to develop intelligent vehicle parking distribution system based on LoRa network at the circumstance of traffic congestion during cultural festival in a local city. This paper proposes a parking dispatch and distribution system using a Q-learning algorithm to rapidly disperse traffics that increases suddenly because of in-bound traffics from the outside of a city in the real-time base as well as to increase parking probability in a parking lot which is widely located in a city. Design/methodology/approach The system get information on realtime-base from the sensor network of IoT (LoRa network). It will contribute to solve the sudden increase in traffic and parking bottlenecks during local cultural festival. We applied the simulation system with Queuing model to the Yudeung Festival in Jinju, Korea. We proposed a Q-learning algorithm that could change the learning policy by setting the acceptability value of each parking lot as a threshold from the Jinju highway IC (Interchange) to the 7 parking lots. LoRa Network platform supports to browse parking resource information to each vehicle in realtime. The system updates Q-table periodically using Q-learning algorithm as soon as get information from parking lots. The Queuing Theory with Poisson arrival distribution is used to get probability distribution function. The Dijkstra algorithm is used to find the shortest distance. Findings This paper suggest a simulation test to verify the efficiency of Q-learning algorithm at the circumstance of high traffic jam in a city during local festival. As a result of the simulation, the proposed algorithm performed well even when each parking lot was somewhat saturated. When an intelligent learning system such as an O-learning algorithm is applied, it is possible to more effectively distribute the vehicle to a lot with a high parking probability when the vehicle inflow from the outside rapidly increases at a specific time, such as a local city cultural festival.

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

Fast Face Gender Recognition by Using Local Ternary Pattern and Extreme Learning Machine

  • Yang, Jucheng;Jiao, Yanbin;Xiong, Naixue;Park, DongSun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1705-1720
    • /
    • 2013
  • Human face gender recognition requires fast image processing with high accuracy. Existing face gender recognition methods used traditional local features and machine learning methods have shortcomings of low accuracy or slow speed. In this paper, a new framework for face gender recognition to reach fast face gender recognition is proposed, which is based on Local Ternary Pattern (LTP) and Extreme Learning Machine (ELM). LTP is a generalization of Local Binary Pattern (LBP) that is in the presence of monotonic illumination variations on a face image, and has high discriminative power for texture classification. It is also more discriminate and less sensitive to noise in uniform regions. On the other hand, ELM is a new learning algorithm for generalizing single hidden layer feed forward networks without tuning parameters. The main advantages of ELM are the less stringent optimization constraints, faster operations, easy implementation, and usually improved generalization performance. The experimental results on public databases show that, in comparisons with existing algorithms, the proposed method has higher precision and better generalization performance at extremely fast learning speed.

Discriminative Training of Sequence Taggers via Local Feature Matching

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.209-215
    • /
    • 2014
  • Sequence tagging is the task of predicting frame-wise labels for a given input sequence and has important applications to diverse domains. Conventional methods such as maximum likelihood (ML) learning matches global features in empirical and model distributions, rather than local features, which directly translates into frame-wise prediction errors. Recent probabilistic sequence models such as conditional random fields (CRFs) have achieved great success in a variety of situations. In this paper, we introduce a novel discriminative CRF learning algorithm to minimize local feature mismatches. Unlike overall data fitting originating from global feature matching in ML learning, our approach reduces the total error over all frames in a sequence. We also provide an efficient gradient-based learning method via gradient forward-backward recursion, which requires the same computational complexity as ML learning. For several real-world sequence tagging problems, we empirically demonstrate that the proposed learning algorithm achieves significantly more accurate prediction performance than standard estimators.

Reinforcement Learning using Propagation of Goal-State-Value (목표상태 값 전파를 이용한 강화 학습)

  • Kim, Byeong-Cheon;Yun, Byeong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.5
    • /
    • pp.1303-1311
    • /
    • 1999
  • In order to learn in dynamic environments, reinforcement learning algorithms like Q-learning, TD(0)-learning, TD(λ)-learning have been proposed. however, most of them have a drawback of very slow learning because the reinforcement value is given when they reach their goal state. In this thesis, we have proposed a reinforcement learning method that can approximate fast to the goal state in maze environments. The proposed reinforcement learning method is separated into global learning and local learning, and then it executes learning. Global learning is a learning that uses the replacing eligibility trace method to search the goal state. In local learning, it propagates the goal state value that has been searched through global learning to neighboring sates, and then searches goal state in neighboring states. we can show through experiments that the reinforcement learning method proposed in this thesis can find out an optimal solution faster than other reinforcement learning methods like Q-learning, TD(o)learning and TD(λ)-learning.

  • PDF