Journal of the Institute of Electronics and Information Engineers
/
v.51
no.11
/
pp.155-164
/
2014
Local histogram equalization is one of the most popular ways of enhancing the local brightness features of an input image. However, local histogram equalization reveals some problems. First, undesired artifacts are produced by over-enhancing the local features. Second, the enhancement of local features does not always result in global contrast enhancement. To cope with these problems, we propose an illumination driven local histogram equalization method. First, to estimate the illumination information, the proposed method combines the input image and the blurred image produced through the process of the down-sampling and the up-sampling. Next, the proposed method adaptively adjusts the mapping function estimated by the local histogram equalization using the information of the illumination. As a result, the proposed illumination information driven local histogram equalization method simultaneously enhances the global and the local contrast levels while preventing any local artifacts. Experimental results show that the proposed algorithm outperforms the conventional methods on objective and subjective criteria.
Journal of the Korea Institute of Military Science and Technology
/
v.7
no.3
s.18
/
pp.101-109
/
2004
Image enhancement for Infrared imaging system is mainly based on the global histogram equalization. The global histogram equalization(GHE) is a method in which each pixel is equalized by using a whole histogram of an image. GHE is speedy and effective for real-time imaging system but its method fails to enhance the fine details. On the other hand, the basic local histogram equalization(LHE) method uses sliding a window and. the pixels under the window region are equalized over the whole output dynamic range. The LHE is adequate to enhance the fine details. But this method is computationally slow and noises are over-enhanced. So various local histogram equalization methods have been already presented to overcome these problems of LHE. In this paper, a new regional dynamic range histogram equalization (RDRHE) is presented. RDRHE improves the equalization quality while reducing the computational burden.
In case brightness distribution is concentrated in a region, it is difficult to classify the image features. To solve this problem, we apply global histogram equalization and local histogram equalization to images. In case of global histogram equalization, it can be too bright or dark because it doesn't consider the density of brightness distribution. Thus, it is difficult to enhance the local contrast in the images. In case of local histogram equalization, it can produce unexpected blocks in the images. In order to enhance the contrast in the images, this paper proposes a local histogram equalization based on the Gaussian Mixture Models(GMMs) in regions of histogram. Mean and variance parameters in each regions is updated EM-algorithm repeatedly and then ranges of equalization on each regions. The experimental results performed with image of various contrasts show that the proposed algorithm is better than the global histogram equalization.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.53
no.2
/
pp.76-85
/
2004
In this paper, the contrast enhancement method of thermal image is proposed and it is the plateau equalization algorithm using local histogram for the real time display of infrared imagery. Through hardware implementing, its practicality and adequacy are proved. Examinations are executed to verify the effect of contrast enhancement by bright control and contrast control automatic to the plateau value in the manual mode, and that verified the effect of contrast enhancement in the automatic mode and the practicality in the real system. According to the experiment results, the proposed "the application of local histogram and plateau equalization algorithm for contrast enhancement of real time thermal image"in this dissertation is the verified method for the thermal imaging contrast enhancement.
In this paper, a novel neighborhood metric of histogram equalization (HE) algorithm for contrast enhancement is presented. We present a refinement of HE using neighborhood metrics with a general framework which orders pixels based on a sequence of sorting functions which uses both global and local information to remap the image greylevels. We tested a novel sorting key with the suggestion of using the original image greylevel as the primary key and a novel neighborhood distinction metric as the secondary key, and compared HE using proposed distinction metric and other HE methods such as global histogram equalization (GHE), HE using voting metric and HE using contrast difference metric. We found that our method can preserve advantages of other metrics, while reducing drawbacks of them and avoiding undesirable over-enhancement that can occur with local histogram equalization (LHE) and other methods.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.12
/
pp.58-66
/
1999
In this paper, an advanced histogram equalization algorithm for contrast enhancement is presented. Histogram equalization is the most popular algorithm. Global histogram equalization is simple and fast, but its contrast enhancement power is relatively low. Local histogram equalization, on the other hand, can enhance overall contrast more effectively, but the complexity of computation required is very high. In this paper, a low pass filter type mask is used to get a sub-block histogram equalization function to more simply produce the high contrast. The low pass filter type mask is realized by partially overlapped sub-block histogram equalization (POSHE). With the proposed method. the computation overhead is reduced by a factor of about one hundred compared to that of local histogram equalization while still achieving high contrast.
Here, we present a new framework for histogram equalization in which both local and global contrasts are enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Filters are chosen depending on image properties, such as noise removal and smoothing. Our experimental results confirmed that this does not increase the computational cost because the filtering process is done by our proposed arrangement of making the histogram while checking neighborhood metrics simultaneously. If the two methods, i.e., histogram equalization and filtering, are performed sequentially, the first method uses the original image data and next method uses the data altered by the first. With combined histogram equalization and filtering, the original data can be used for both methods. The proposed method is fully automated and any spatial neighborhood filter type and size can be used. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.45
no.1
/
pp.15-24
/
2008
This paper proposes a scheme of global image contrast enhancement using local contrast improvement. Methods of global image contrast enhancement redistribute the image gray level distribution using histogram equalization without considering image properties, and cause the result image to include image pixels with excessive brightness. On the other hand, methods of the block-based local image contrast enhancement have blocking artifacts and a problem of eliminating important image features during an image process to reduce them. In order to solve these problems, the proposed method executes the block-based histogram equalization on temporary images that an input image is divided into various fixed-size blocks. And then it performs the global contrast enhancement by applying the global histogram equalization functions to the original input image. Since the proposed method selects the best histogram equalization function from temporary images that are improved by the block-based local image contrast enhancement, it has the advantages of both the local and global image contrast enhancement approaches.
Lertpokanont, B.;Chitwong, S.;Cheevasuvit, F.;Dejhan, K.
Proceedings of the KSRS Conference
/
2003.11a
/
pp.192-194
/
2003
Since the details in quasi-homogeneous region will be destroyed from the conventional global image enhancement method such as histogram equalization. This defect is caused by the saturation of gray level in equalization process. So the local histogram equalization for each quasi-homogeneous region will be used in order to improve the details in the region itself. To obtain the quasi- homogeneous regions, the original image must be segmented. Here we applied the watershed transform to the interesting image. Since the watershed transform is based on mathematical morphology, therefore, the regions touch can be effectively separated. Hence two adjacent regions which have the similar gray pixels will be split off. The process will be independently applied to three different spectral images. Then three different colors are assigned to each processed image in order to produce a color composite image. By the proposed algorithm, the result image shows the better perception on image details. Therefore, the high efficiency of image classification can be obtained by using this color image.
Journal of the Korean Institute of Telematics and Electronics B
/
v.32B
no.12
/
pp.1603-1613
/
1995
The goal of enhancement is to improve the perceptual aspect and visual appearance of images for human viewers. The objectives of image enhancement vary according to its specific application and an image enhancement algorithms used for a specific objective may not be accepted in some other applications. In this paper we review some of conventional enhancement techniques, such as global histogram equalization(GHE), local histogram equalization(LHE), clipped histogram equalization(CHE). We also describe some modified version of these algorithms. The proposed method is to detect detail information. We distinquish edge from nonedge and apply histigram equalization respectively. Simulation results demonstrate the performance of the proposed method for medical image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.