• Title/Summary/Keyword: Local Heating

Search Result 358, Processing Time 0.029 seconds

A Feasibility Study on the Use of Autogeneous GTAW for Correction of Distortions in Welded Aluminum Alloy Structures (알루미늄 熔接構造物의 變形橋正을 위한 Autogeneous GTAW의 適用 可能性 硏究)

  • 하용훈;강춘식;유순영
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.20-34
    • /
    • 1992
  • Characteristics of two correcting methods, a new Autogeneous GTAW heating (TIG) method and the conventional GMAW bead-on plate welding(MIG) method, for distorted aluminum fabrication structures were studied. As a result of microscopic study of Autogeneous GTAW heating and GMAW bead-on plate welding areas, porosities in weld metal and surface cracks in local heating zone were found. Through the mechanical tests, it was verified that porosities decrease tensile strength and surface of distortion, angular displacement and transeverse shrinkage were measures and compared. In order to investigate changes of material properties in heating area and cause of defects such thermal stresses were calculated by ADINA. Through the computations of transient thermal stresses and microscopic observation of fracture surface, thermal stress was found to be the cause of crack during Autogeneous GTAW heating.

  • PDF

Experimental study of bubble flow behavior during flow instability under uniform and non-uniform transverse heat distribution

  • Al-Yahia, Omar S.;Yoon, Ho Joon;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2771-2788
    • /
    • 2020
  • Experiments are conducted to study bubble flow behavior during the instability of subcooled boiling under uniform and non-uniform transverse heating. The non-uniform heat distribution introduces nonuniform bubble generation and condensation rates on the heated surface, which is different from the uniform heating. These bubble generation and condensation characteristics introduce a non-uniform local pressure distribution in the transverse direction, which creates an extra non-uniform pressure on the flowing bubbles. Therefore, different bubble flow behavior can be observed between uniform and non-uniform heating conditions. In the uniform heating, bubble velocity fluctuations are low, and the bubbles travel straight along the axial direction. In the non-uniform heating, more fluctuation in the bubble velocity occurs at low mass flow rate and high subcooled inlet temperatures, and reverse flow is observed. Additionally, the bubbles show a zigzag trajectory when they pass through the channel, which indicates the existence of cross flow in the transverse direction.

Development of stress correction formulae for heat formed steel plates

  • Lim, Hyung Kyun;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.141-152
    • /
    • 2018
  • The heating process such as line heating, triangular heating and so on is widely used in plate forming of shell plates found in bow and stern area of outer shell in a ship. Local shrinkage during heating process is main physical phenomenon used in plate forming process. As it is well appreciated, the heated plate undergoes the change in material and mechanical properties around heated area due to the harsh thermal process. It is, therefore, important to investigate the changes of physical and mechanical properties due to heating process in order to use them plate the design stage of shell plates. This study is concerned with the development of formula of plastic hardening constitutive equation for steel plate on which line heating is applied. In this study the stress correction formula for the heated plate has been developed based on the numerical simulation of tension test with varying plate thickness and heating speed through the regression analysis of multiple variable case. It has been seen the developed formula shows very good agreement with results of numerical simulation. This paper ends with usefulness of the present formula in examining the structural characteristic of ship's hull.

Warm Incremental Forming with Local Heating Apparatus (국부가열장치를 이용한 온간 무금형 점진 성형)

  • Kim, S.W.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.349-353
    • /
    • 2008
  • A fundamental study on warm incremental forming of a magnesium alloy sheet has been carried out. In order to enhance the incremental formability of the magnesium alloy sheet, a local heating device was newly designed and manufactured. Through the incremental forming tests of AZ31 under various forming conditions, the effects of process parameters such as the temperature, feeding depth per cycle, and inclination angle on the incremental formability of AZ31 were investigated. In addition, conventional FLDs at elevated temperatures were constructed experimentally and applied to predict the forming failure.

  • PDF

Regulation of Star Formation in Turbulent, Multiphase Interstellar Media

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the star formation rate (SFR) in turbulent, multiphase, galactic gaseous disks. Our simulation domain is axisymmetric, and local in the radial direction and global in the vertical direction. Our models include galactic rotation, vertical density stratification, self-gravity, radiative heating and cooling, and thermal conduction, but do not include spiral-arm features. Turbulence in our models is driven by momentum feedback from supernova explosion events occurring in localized dense regions formed by thermal and gravitational instabilities. Self-consistent radiative heating, representing enhanced/reduced FUV photons from the star formation, is also taken into account. By controlling three parameters (the gas surface density, the stellar disk density, and the angular rotation rate) that characterize local galactic disks, we explore how the SFR depends on the background environmental state. We also discuss the relation between the SFR and the gas surface density found in our numerical models in comparison with observations.

  • PDF

A Scheme for Standardization of the Apartment Management Expenses Levy in the District of Busan(III)-focused on the apartments of the local heating system- (부산지역 공동주택 관리비 부과내역서 표준화(III)-지역난방방식 아파트를 중심으로-)

  • 강혜경
    • Journal of Families and Better Life
    • /
    • v.19 no.5
    • /
    • pp.167-187
    • /
    • 2001
  • The purpose of this study was to develop a scheme for standardization of the apartment management expenses levy focused on the apartments of the local heating system in Busan. The researcher with apartment managers and executive secretaries of Busan Citizen’s Coalition for Economic Justice performed a scheme for standardization through discussion of 30 times as well as investigation of theoretical literature. This scheme for standardization was based on the Act for Community of Dwelling Houses. It is to show the scheme for standardization of apartment management expenses levy all-inclusive.

  • PDF

A MATLAB-based Approach for Visualization of Human Thermal Psychology (MATLAB 기반 열심리 가시화 기법)

  • Gineesh Gopi;Mohammad F. B. Suhaimi;Seong Eun Yoon;Hyunjin Lee;Jung Kyung Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.72-82
    • /
    • 2023
  • Effective thermal management in a battery electric vehicle (BEV) is crucial for reducing energy consumption and maximizing driving range in cold climates. Consequently, original equipment manufacturers are actively investing in the development of local heating systems. Visualizing occupant thermal behaviors or comfort can readily provide valuable insights that would substantially impact the design and control strategies of such microclimate systems. This study uses MATLAB for three-dimensional visualization of human thermal psychology. The developed program enables qualitative assessment of occupant comfort in BEVs.

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

Mathematical modeling of the local temperature effect on the deformation of the heat-shielding elements of the aircraft

  • Antufiev, Boris A.;Sun, Ying;Egorova, Olga V.;Bugaev, Nikolay M.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.59-68
    • /
    • 2022
  • The physical and mathematical foundations of the heat-shielding composite materials functioning under the conditions of aerodynamic heating of aircraft, as well as under the conditions of the point effect of high-energy radiation are considered. The problem of deformation of a thin shallow shell under the action of a local temperature field is approximately solved. Such problems arise, for example, in the case of local destruction of heat-protective coatings of aircraft shells. Then the aerodynamic heating acts directly on the load-bearing shell of the structure. Its destruction inevitably leads to the death of the entire aircraft. A methodology has been developed for the numerical solution of the entire complex problem on the basis of economical absolutely stable numerical methods. Multiple results of numerical simulation of the thermal state of the locally heated shallow shell under conditions of its thermal destruction at high temperatures have been obtained.