• Title/Summary/Keyword: Local Feedback

Search Result 263, Processing Time 0.024 seconds

Servo System Control Using Continuous Time Deadbeat Controller (연속시간 유한정정제어기를 이용한 서보시스템 제어)

  • 김진용;김성은;김성열;이정국;이금원;이준모
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.117-120
    • /
    • 2001
  • Deadbeat property is well established in digital control system design, But in continuous time, it can hardly realized for it's asymtotic property. But recently japanese researchers suggested serveral method for continuous time deadbeat property. They use delay elements In polynomials and established for the deadbeat condition. By solving this condition, unknown coefficients in polynomials with delay elements is obtained. In this paper, design method for optimal continuous time deadbeat servo system using 2nd order smooting elementsis studied. Continuous time deadbeat controller is consisted of serial integral compensator and local feedback one in state feedback loop. Determining method for damping rations and natural frequencies of smothing elements is described. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF

Decentralized Stabilization of a Class of Uncertain Large Scale Continuous-Time systems (시스템 파라미터가 불확실한 대규모 선형련 매시간 시스템의 비집중 안정화)

  • Lyou, Joon;Bien, Zeungnam;Youn, Myung-Joong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.3
    • /
    • pp.77-83
    • /
    • 1985
  • This paper considers the problem of stabilizing a class of continuous-time large scale linear systems when the system parameters are uncertain. The proposed local adaptive controls are a combination of a new adaptive feedback control and the conventional linear feedback control. A condition of stability is derived , under which the overall closed-loop system is assured to be globally stable. Also, a numerical example is illustrated via computer simulation.

  • PDF

An Analysis of a Post-Trip Return-to-Power Steam Line break Events

  • Baek, Seung-Su;Lee, Cheol-Sin;Song, Jin-Ho;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.544-549
    • /
    • 1995
  • An analysis for Steam Line Break (SLB) events which result in a return-to-power conditions after reactor trip was performed for a postulated Yonggwang Nuclear Power Plant Unit 3 cycle 8. Analysis methodology for post-trip return-to-power SLB is quite different from that of a no return-to-power SLB and is more complicated. Therefore, it is necessary to develop an methodology to analyze the response of the NSSS parameter and the fuel performance for the post-trip return-to-power SLB events. In this analysis, the cases with and without offsite power were simulated by crediting 3-D reactivity feedback effect due to local heatup around stuck CEA and compared with the cases without 3-D reactivity feedback with respect to fuel performance, departure from nucleate boiling ratio (DNBR) and linear heat generation rate (LHGR).

  • PDF

Design of a CDBC Using Multirate Sampling (Multirate 샘플링을 이용한 CDBC의 설계)

  • 김진용;김성열;이금원;이준모
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes a design method of a CDBC(Continuous-time Deadbeat Controller)system that takes into account the response between the sampling instant and using second-order smoothing elements. The continuous deadbeat controller is composed of a serial integral compensator and a local feedback compensator introduced into the state feedback loop. A DC servo motor is chosen for implementing CDBC algorithm. Especially according to the variable input and disturbance, corresponding CDBC design method is suggested. A Matlab Simulink is used for simulation with the Motor parameter. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF

Design of a CDBC Using Second-order Smoothing Element (2차 평활요소를 이용한 CDBC의 설계)

  • 김진용;김성열;이금원
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • This paper presents a new design method of optimal continuous deadbeat controller by using second-order smoothing elements. The continuous deadbeat controller is made of a serial integral compensator and a local feedback compensator introduced into the state feedback loop. The decision method of the damping factor and the natural angular frequency of the smoothing element is described. A numerical example is given to show how well input-output characteristics are improved. Especially according to the variable input and disturbance, corresponding CDBC design method is suggested. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF

Simultaneous optical ignition and spectroscopy of a two-phase spray flame for feedback control System (이상상태 분무 화염에서의 레이저 점화 및 분광 측정을 통한 피드백 제어 연구)

  • Lee, Seok Hwan;Kim, Hyunwoo;Do, Hyungrok;Yoh, Jack J.
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.215-218
    • /
    • 2015
  • Simultaneous laser ignition and spectroscopy is a scheme that enables rapid determination of the local equivalence ratio and condensed fuel concentration during a reaction in a two phase spray flame. We have conducted quantitative analysis of the LIBS signals according to the equivalence ratio, droplet size, droplet number density and droplet concentration as a part of novel feedback control strategy proposed for flame ignition and stabilization with simultaneous in situ combustion flow diagnostics. This is a desirable scheme since such real time information onboard an engine for instance can be constantly monitored and fed back to the control loop to enhance the mixing process and minimize emissions of unwanted species and potential combustion instability.

  • PDF

Effects of radiation-modulated cooling on the momentum transfer from stellar feedback

  • Na, Chongsam;Kimm, Taysun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.70.2-70.2
    • /
    • 2019
  • Strong radiation fields can change the ionization state of metals and hence cooling rates. In order to understand their effects on the momentum transfer from radiation and supernova feedback, we perform a suite of radiation-hydrodynamic simulations with radiation-modulated metal cooling. For this purpose, we pre-tabulate the metal cooling rates for a variety of spectral shapes and flux levels with the spectral synthesis code, Cloudy, and accurately determine the rates based on the local radiation field strength. We find that the inclusion of the radiation-modulated metal cooling decreases the total radial momentum produced by photo-ionization heating by a factor of ~3 due to enhanced cooling at temperature T~10^3-4 K. The amount of momentum transferred from the subsequent SN explosions, however, turns out to be little affected by radiation, as the main cooling agents at T~10^5-6 K are only destroyed by soft X-ray radiation which is generally weak. We further discuss the total momentum budget in various conditions.

  • PDF

An Application of System Dynamics Modeling to the Measurement of the effectiveness of Local Regional Sustainable Development Strategies: A Case of the Revival of Bamboo Industry in Damyang, JeollaNamdo (지역의 생태지향적 발전전략 평가를 위한 체계동태모형의 정립과 적용 -담양군 대나무 신산업 육성전략의 파급효과 분석-)

  • Jeong, Hoi-Seong;Jeon, Dae-Uk
    • Korean System Dynamics Review
    • /
    • v.7 no.1
    • /
    • pp.147-172
    • /
    • 2006
  • With the purpose of long-range planning toward local/regional sustainable development, it is desired to avoid unconditional industrialization and expansion and to build an eco-oriented development strategy considering site-specific characteristics of the environment. This paper thus aims at the elaboration of a system dynamics model of a locality/region so as to understand inherent dynamics of sustainable development and to assess the effectiveness of such an eco-oriented strategy. The model thus consists of several positive and negative feedback loops that accelerate or restrict local/regional economic growth within a system boundary incorporating the environment, economy, and society. The model is moreover applied to the assessment of the effectiveness of the development plan recently established in Damyang in JeollaNamdo, Korea. It is regarded in this case to be effective for population immigration and economic prosperity to give priority to restore the bamboo ecosystem and nourish a series of eco-friendly industries based on the bamboo items developed recently. It is also to be positive to sustainable development since it enables to maintain high quality of the environment from the outset of their development steps.

  • PDF

Design of the Resistive Mixer MMIC with high linearity and LO-RF isolation (고선형성과 높은 LO-RF 격리도를 갖는 새로운 구조의 저항성 Mixer MMIC 설계)

  • Lee, Kyoung-Hak
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.7-11
    • /
    • 2014
  • In this paper, we designed resistive MMIC mixer using $0.5{\mu}m$ p-HEMT process. This Mixer is designed to have a similar performance in -4 ~ 4 dBm local oscillator signal power level and to maintain a constant conversion loss and linear performance due to the variation of local signal. In order to have such characteristics, we designed new feedback circuit topology by using FET, and minimized performance change for LO signal power level variation, also obtain MMIC mixer characteristics which is able to apply in wideband. In the design result, When the LO signal power is -4 ~ 4 dBm, there was 6 dB conversion loss and it came up with the excellent result that IIP3 got over 30 dBm in 0.5 ~ 2.6GHz frequency band.

System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network (지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명)

  • Chong, K.T.;Hong, D.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF