본 논문에서는 얼굴 표정 인식을 위한 지역미세패턴(local micro pattern)의 하나인 LBP(Local Binary Pattern) 코드의 잡음에 대한 단점을 해결하기위하여 새로운 미세패턴 방법인 LDP(Local Directional Pattern)를 제안한다. 제안된 방법은 LBP의 문제점을 해결하기 위해 $m{\times}m$ 마스크를 이용하여 8개의 방향 성분을 구하고, 이를 크기에 따라서 정렬한 후 상위 k개를 선정하여 해당 방향을 나타내는 비트를 1로 설정한다. 그리고 8개의 방향 비트를 순차적으로 연결하여 최종 패턴 코드를 생성한다. 실험결과, 제안된 방법은 기존 방법에 비해 회전에 대한 영향이 적으며, 잡음에 대한 적응력이 현저히 높았다. 또한, 제안된 방법을 기반으로 얼굴의 영구적인 특징과 일시적인 특징을 함께 표현하는 새로운 지역미세패턴의 개발이 가능함을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권9호
/
pp.4549-4566
/
2017
This work presents a novel facial descriptor, which is named as multiscale adaptive local directional texture pattern (MALDTP) and employed for expression recognition. We apply an adaptive threshold value to encode facial image in different scales, and concatenate a series of histograms based on the MALDTP to generate facial descriptor in term of Gabor filters. In addition, some dedicated experiments were conducted to evaluate the performance of the MALDTP method in a person-independent way. The experimental results demonstrate that our proposed method achieves higher recognition rate than local directional texture pattern (LDTP). Moreover, the MALDTP method has lower computational complexity, fewer storage space and higher classification accuracy than local Gabor binary pattern histogram sequence (LGBPHS) method. In a nutshell, the proposed MALDTP method can not only avoid choosing the threshold by experience but also contain much more structural and contrast information of facial image than LDTP.
본 논문에서는 얼굴 표정인식을 위한 새로운 지역 미세 패턴 기술 방법인 Signed Local Directional Pattern(SLDP)을 제안한다. SLDP는 얼굴 영상의 텍스쳐 정보를 표현하기 위해 에지 정보를 이용한다. 이는 기존의 방법들에 비해 뛰어난 구별 성능과 효율적인 코드 생성을 가능하게 한다. SLDP는 마스크 범위 이웃 화소들을 이용하여 에지 반응 값을 계산하고 이들 중 부호를 고려하여 에지 반응 값이 큰 에지 방향 정보를 가지고 만들어진다. 이는 기존 LDP에서 구별하지 못하던 비슷한 에지구조에 밝기 값이 반대인 지역 패턴을 구별할 수 있다. 본 논문에서는 얼굴 표정인식을 위해 얼굴 영상을 여러 영역으로 분할하고 각 영역으로부터 SLDP코드의 분포를 계산한다. 각 분포는 얼굴의 지역적인 특징을 나타내고 이들 특징을 연결해서 얼굴 전체를 나타내는 얼굴 특징 벡터를 생성한다. 본 논문에서는 생성된 얼굴 특징 벡터와 SVM(Support Vector Machine)을 이용해서 Cohn-Kanade 데이터베이스와 JAFFE데이터베이스에서 얼굴 표정인식을 수행했다. SLDP는 표정인식에서 기존 방법들보다 뛰어난 결과를 보여주었다.
본 논문에서는 기존의 제안된 LDP(Local Directional Pattern)에 기반하여 지역적인 얼굴특징을 표현하는 방법을 제안한다. 제안된 방법은 눈과 입과 같은 얼굴의 영구적인 특징과 표정이 변하면서 발생하는 일시적인 특징을 효과적으로 표현할 수 있도록 얼굴특징별로 크기와 형태를 달리하는 중첩 가능한 블록을 설정하고 이를 바탕으로 얼굴 특징벡터를 구성한다. 제안된 중첩 블록설정 및 특징 표현 방법은 기하학적 특징을 기반으로 하는 접근 방법의 장점을 수용할 뿐만 아니라 각 얼굴특징의 움직임 특성을 이용하여 얼굴검출에 대한 오류를 수용할 수 있고, 블록사이즈의 가변성으로 인한 공간정보를 유지할 수 있어 표본오차를 줄일 수 있는 장점이 있다. 실험결과, 제안된 방법은 기존 방법에 비해 인식률이 향상됨을 확인하였고, 기존 얼굴 특징 벡터보다 길이가 짧기 때문에 연산량 또한 감소하는 것을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권9호
/
pp.3186-3203
/
2021
In this paper, a multi-scale local difference directional number (MLDDN) pattern is proposed for pig identification. Firstly, the color images of individual pig are converted into grey images by the most significant bits (MSB) quantization, which makes the grey values have better discrimination. Then, Gabor amplitude and phase responses on different scales are obtained by convoluting the grey images with Gabor masks. Next, by calculating the main difference of local edge directions instead of traditionally edge information, the directional numbers of Gabor amplitude and phase responses are encoded. Finally, the block histograms of the encoded images are concatenated on each scale, and the maximum pooling is adopted on different scales to avoid the high feature dimension. Experimental results on two pigsties show that MLDDN impressively outperforms the other widely used local descriptors.
본 논문에서는 기존에 제안된 LDP(Local Directional Pattern)를 기반으로 얼굴 표정 인식 시스템에 대한 설계 및 구현 방법을 제안한다. LDP는 얼굴 영상을 구성하고 있는 각 화소를 주변 화소들과의 관계를 고려하여 지역적인 미세 패턴(Local Micro Pattern)으로 표현해준다. 새롭게 제시된 LDP에서 생성되는 코드들이 다양한 조건하에서 정확한 정보를 포함할 수 있는지의 여부를 검증할 필요가 있다. 따라서, 새롭게 제안된 지역 미세 패턴인 LDP를 다양한 환경에서 신속하게 검증하기 위한 평가 시스템을 구축한다. 제안된 얼굴 표정인식 평가 시스템에서는 6개의 컴포넌트를 거쳐 얼굴 표정인식률을 계산할 수 있도록 구성하였으며, Gabor, LBP와 비교하여 LDP의 인식률을 검증한다.
본 논문에서는 성별 인식을 위해 얼굴 영상을 효과적으로 기술하는 새로운 지역 패턴 방법 Local Prominent Directional Pattern (LPDP)를 제안한다. 제안된 LPDP 방법은 성별 인식에 중요한 얼굴 모양을 명확하게 구분하기 위해 주변 패턴이 누적된 히스토그램을 통계적으로 분석하고 패턴 변화가 크게 발생하는 픽셀을 부호화 한다. 통계적인 정보를 사용하는 얼굴 모양 구분에 중요한 뚜렷한 에지 방향 패턴 영역을 구분하는 중요한 정보를 제공 할 수 있다. 이는 뚜렷한 에지 방향 패턴이 나타나는 영역의 주변도 유사한 에지 방향 패턴이 나타내기 때문에 통계적으로 특정 방향이 히스토그램에 많이 누적될 수 있기 때문이다. 또한 통계적인 방법은 주변 영역의 정보를 많이 수용하기 때문에 잡음으로 발생하는 에지 방향 변화 오류에 강력한 장점이 있다. 제안된 방법은 기존 방법들 보다 더 강력한 성별인식에 중요한 얼굴 모양 구분 능력을 보여주면서 국소적으로 발생하는 잡음에 견고함을 보여준다. 우리는 제안된 방법의 성능을 평가하기 위해 밝기, 표정, 연령, 머리 포즈가 변화하는 성별 인식 데이터 셋에 다양한 실험을 실험 했고 기존 방법 보다 제안된 방법의 성능이 우수함을 입증했다.
본 논문에서는 지역적인 에지의 방향 정보와 반응 크기, 주변 화소와의 밝기값 차이를 LDP 코드에 포함함으로써 얼굴 표정 인식률을 향상시킨다. 기존 LDP 코드를 사용하면 LBP에 비해서 영상의 밝기 변화에 덜 민감하고 잡음에 강한 장점을 가진다. 하지만, 밝기 변화가 없는 매끄러운 영역의 정보를 표현하기 어렵고, 배경에 얼굴과 유사한 에지 패턴이 존재하는 경우에는 인식률이 저하되는 문제점이 있다. 따라서 에지 방향 정보를 기반으로 에지 강도 및 밝기값을 추가할 수 있도록 LDP 코드를 개선하고, 인식률을 측정한다.
지역 패턴을 정확하게 부호화 하는 방법은 텍스처 분류 연구에 매우 중요한 요소다. 하지만 기존 널리 연구된 LBP기반 방법들은 잡음에 취약한 근본적인 문제점이 있다. 최근 표정인식 분야에서 에지반응 값과 방향 정보를 활용한 LDP방법이 제안되었다. LDP방법은 LBP보다 잡음에 강하고 더 많은 정보를 코드에 수용할 수 있는 장점이 있지만 텍스처 분류에 적용하기에는 치명적인 회전 변화에 민감한 단점이 있다. 본 논문에서는 LDP 방법에 회전 불변 특성을 결합하고 기존 LDP가 가지고 있던 부호 정보를 수용하지 않은 단점과 밝기 값 차이가 적은 영역에서 의미 없는 코드가 생성되는 단점을 극복한 새로운 지역 패턴 부호화 방법인 Rotation Invariant Local Directional Pattern 방법을 제안한다. 본 논문에서 제안된 방법의 텍스처 분류 성능을 입증하기 위해 널리 사용되는 UIUC, CUReT 데이터 셋에서 텍스처 분류를 수행했다. 그 결과 제안된 RILDP방법이 기존 방법보다 우수한 성능을 보여주었다.
일반적으로 이진패턴 변환은 조명 변화에 강인한 특성을 가지므로, 얼굴인식 및 표정인식 분야에 널리 사용되고 있다. 이에, 본 논문에서는 기존의 LDP(Local Directional Pattern)의 텍스처 성분을 개선한 MLDP(Modified LDP) 변환 영상에 2D-PCA(Two-Dimensional Principal Component Analysis) 알고리즘을 결합한 조명변화에 강인한 얼굴인식 방법에 대하여 제안한다. 기존의 LBP(Local Binary Pattern)나 LDP와 같은 이진패턴 변환들이 히스토그램 특징 추출을 위해 주로 사용되는 것과는 다르게, 본 논문에서 제안하는 방법은 MLDP 영상을 2D-PCA 특징추출을 위해 직접 사용한다는 특성을 갖는다. 제안 방법의 성능평가는 PCA(Principal Component Analysis), 2D-PCA 및 가버변환 영상과 LBP를 결합한 알고리즘을 사용하여, 다양한 조명변화 환경에서 구축된 Yale B 및 CMU-PIE 데이터베이스를 이용하여 수행되었다. 실험 결과, MLDP 영상과 2D-PCA를 사용한 제안 방법이 가장 우수한 인식 성능을 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.