• Title/Summary/Keyword: Lobachevsky

Search Result 5, Processing Time 0.017 seconds

Identifying Factors Increasing and Decreasing Economic Resilience During COVID-19 Crisis

  • Zakharov, Vladimir Yakovlevich;Ludushkina, Elena Nikolaevna;Kornilova, Elena Valerievna;Kislinskaya, Marina Vladimirovna;Brykalov, Sergei Mikhailovich
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.181-190
    • /
    • 2022
  • The article contains an overview of the results of recent research by think tanks in different countries, devoted to the analysis of economic resilience factors in the Covid-19 crisis and the development of recommendations for improving preparedness for the next crises. The authors consider and propose a theoretical framework for the concept of the resilience of economic systems. The impact of the COVID-19 crisis on national economies is analyzed. Factors explaining the different cability of economic systems to withstand shock in the short and long term are identified. The reactions of market participants and national governments to the crisis are assessed. It is shown how the COVID-19 crisis has affected the digital transformation of economic systems, and how digital transformation helps to increase the resilience of national economies so that the latter can emerge from the crisis even stronger.

Influence of a soft FGM interlayer on contact stresses under a beam on an elastic foundation

  • Aizikovich, Sergey M.;Mitrin, Boris I.;Seleznev, Nikolai M.;Wang, Yun-Che;Volkov, Sergey S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.613-625
    • /
    • 2016
  • Contact interaction of a beam (flexible element) with an elastic half-plane is considered, when a soft inhomogeneous (functionally graded) interlayer is present between them. The beam is bent under the action of a distributed load applied to the surface and a reaction of the elastic interlayer and the half-space. Solution of the contact problem is obtained for different values of thickness and parameters of inhomogeneity of the layer. The interlayer is assumed to be significantly softer than the underlying half-plane; case of 100 times difference in Young's moduli is considered as an example. The influence of the interlayer thickness and gradient of elastic properties on the distribution of the contact stresses under the beam is studied.

Calculation of the radiative lifetime of Wannier-Mott excitons in nanoclusters

  • Kukushkin, Vladimir A.
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • This study is aimed to calculate the radiative lifetime of Wannier-Mott excitons in nanoclusters of a narrow-bandgap semiconductor embedded in a wide-bandgap one. The nanocluster linear dimensions are assumed to be much larger than the radius of the exciton so that the latter is not destructed by the confinement potential as it takes place in small quantum dots. The calculations were carried out for an example of InAs nanoclusters put into the GaAs matrix. It is shown that the radiative lifetime of Wannier-Mott excitons in such clusters increases with the decrease of the cluster dimensions, this tendency being more pronounced at low temperatures. So, the creation of excitons in nanoclusters of a narrow-bandgap material embedded in a wide-bandgap one can be used to significantly prolong their radiative lifetime in comparison with that of excitons in a bulk semiconductor.

Enhancement of the surface plasmon-polariton excitation in nanometer metal films

  • Kukushkin, Vladimir A.;Baidus, Nikoly V.
    • Advances in nano research
    • /
    • v.2 no.3
    • /
    • pp.173-177
    • /
    • 2014
  • This study is aimed to the numerical modeling of the surface plasmon-polariton excitation by a layer of active (electrically pumped) quantum dots embedded in a semiconductor, covered with a metal. It is shown that this excitation becomes much more efficient if the metal has a form of a thin (with thickness of several nanometers) film. The cause of this enhancement in comparison with a thick covering metal film is the partial surface plasmon-polariton localized at the metal-semiconductor interface penetration into air. In result the real part of the metal+air half-space effective dielectric function becomes closer (in absolute value) to the real part of the semiconductor dielectric function than in the case of a thick covering metal film. This leads to approaching the point of the surface plasmon-polariton resonance (where absolute values of these parts coincide) and, therefore, the enhancement of the surface plasmon-polariton excitation. The calculations were made for a particular example of InAs quantum dot layer embedded in GaAs matrix covered with an Au film. Its results indicate that for the 10 nm Au film the rate of this excitation becomes by 2.5 times, and for the 5 nm Au film - by 6-7 times larger than in the case of a thick (40 nm or more) Au film.