• 제목/요약/키워드: Loading system

검색결과 3,333건 처리시간 0.033초

Full-scale experimental evaluation of a panelized brick veneer wall system under simulated wind loading

  • Liang, Jianhai;Memari, Ali M.
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.99-123
    • /
    • 2011
  • Brick veneer over steel stud backup wall is lighter and easier to construct compared to brick veneer over concrete masonry backup wall. However, due to the relatively low stiffness of the steel stud backup, the brick veneer tends to crack under wind load. This paper briefly introduces a new panelized brick veneer with steel frame backup wall system that is developed to potentially address this problem. The experimental study of the performance of this system under simulated wind loading is discussed in detail. The test setup details and the test specimens are introduced, results of major interests are presented, and performance of the new system is evaluated based on the test results.

비틀림 흡수구조형 제륜자 홀더행거의 적용방안에 관한 연구 (The research of application plan for the twist absorption structure type brake holder hanger)

  • 홍재성;함영삼;백영남
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.903-908
    • /
    • 2004
  • Among welded structure bogies in use for high speed freight car, a part of bogies manufactured in 1999 and 2000 have found problems that crack occurs in its end beam. In case of a freight car the difference of weight between empty and loading conditions are worse than in case of a passenger car. Moreover its brake system is tread brake without second suspension system. Cracks of end beam is supposed to be due to loading by brake system rather than vertical loading by freight. These cracks can make brake system useless and may be a cause of derailment in the worst case. In this study, we have proposed a simple torsion-free brake shoe holder hanger to remove torsion of hanger bracket which was supposed to be one of causes of cracks and performed finite element analyses. Also static load test was applied in torsion free brake shoe holder.

  • PDF

충격 댐퍼의 동특성과 가속 질량추가 현상에 대한 연구 (Dynamic Behaviors of the Impact Damper and the Accelerated Mass Loading)

  • 왕세명;박종찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.396-401
    • /
    • 2006
  • Dynamic behaviors of the impact damper are studied experimentally and numerically. In order to investigate wide range of excitation frequencies and amplitudes, a simple but high amplifying and bias-free experimental setup is designed. Experiments focused on the harsh operation condition demonstrate Accelerated mass loading which not only deteriorates the performance of the impact damper but also involves the structural resonance which should be avoided for the stability of the system. In the previous studies, instability or deterioration of the performance was reported for the off resonance frequency region. But this paper shows that the performance deterioration and structural resonances can be predicted. Using finite element modeling and analysis, accurate system parameters were derived and used for the numerical modeling employing the conservation of the momentum. Numerical study of the transient responses using 4th-order Runge-Kutta method demonstrates general performance of the system, and shows that accelerated mass loading phenomenon is deeply related with the vibration amplitudes and the mass of the auxiliary system.

  • PDF

A Strategy for Homogeneous Current Distribution in Direct Methanol Fuel Cells through Spatial Variation of Catalyst Loading

  • Park, Sang-Min;Kim, Sang-Kyung;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.331-337
    • /
    • 2017
  • A simple strategy is proposed herein for attaining uniform current distribution in direct methanol fuel cells by varying the catalyst loading over the electrode. In order to use the same total catalyst amount for a serpentine flow field, three spatial variation types of catalyst loading were selected: enhancing the cathode catalyst loading (i) near the cathode outlet, (ii) near the cathode inlet, and (iii) near the lateral areas. These variations in catalyst loading are shown to improve the homogeneity of the current distribution, particularly at lower currents and lower air-flow rates. Among these three variations, increased loading near the lateral areas was shown to contribute most to achieving a homogenous current distribution. The mechanism underlying each catalyst loading variation method is different; very high catalyst-loading is shown to decrease the homogeneity of the distribution, which may be caused by water management in the thick catalyst layer thereof.

Dynamic bending behaviours of RC beams under monotonic loading with variable rates

  • Xiao, Shiyun;Li, Jianbo;Mo, Yi-Lung
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.339-350
    • /
    • 2017
  • Dynamic behaviours of reinforced concrete (RC) bending beams subjected to monotonic loading with different loading rates were studied. A dynamic experiment was carried out with the electro-hydraulic servo system manufactured by MTS (Mechanical Testing and Simulation) Systems Corporation to study the effect of loading rates on the mechanical behaviours of RC beams. The monotonic displacement control loading, with loading rates of 0.1 mm/s, 0.5 mm/s, 1 mm/s, 5 mm/s and 10 mm/s, was imposed. According to the test results, the effects of loading rates on the failure model and load-displacement curve of RC beams were investigated. The influences of loading rates on the cracking, ultimate, yield and failure strengths and displacements, ductility and dissipated energy capability of RC beams were studied. Then, the three-dimensional finite element models of RC beams, with the rate-dependent DP (Drucker-Prager) model of concrete and three rate-dependent model of steel reinforcement, were described and verified using the experimental results. Finally, the dynamic mechanical behaviours and deformation behaviours of the numerical results were compared with those of the experimental results.

축대칭 하중을 받는 원통형 셸의 동적응답 해석 (Dynamic Response Analysis of Cylindrical Shell with Axisymmetric Loading)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.33-39
    • /
    • 2013
  • It is very important to analyze the dynamic responses of the shell structures from the viewpoint of the design of shell structures with a variety of axisymmetric loadings. In this paper, the computational algorithm for the dynamic response analysis of an cylindrical shell with axisymmetric loading is formulated by the transfer mass coefficient method based on the transfer of mass coefficient. After the computational programs for obtaining the dynamic responses of cylindrical shells with axisymmetric loading are made by the transfer mass coefficient method and the finite element method, the computational results by both methods are compared. From the computational results, we can confirm that the transfer mass coefficient method has the effectiveness in the dynamic response analyses of cylindrical shells with a variety of axisymmetric loadings.

Modelling the dynamic response of railway track to wheel/rail impact loading

  • Cai, Z.;Raymond, G.P.
    • Structural Engineering and Mechanics
    • /
    • 제2권1호
    • /
    • pp.95-112
    • /
    • 1994
  • This paper describes the formulation and application of a dynamic model for a conventional rail track subjected to arbitary loading functions that simulate wheel/rail impact forces. The rail track is idealized as a periodic elastically coupled beam system resting on a Winkler foundation. Modal parameters of the track structure are first obtained from the natural vibration characteristics of the beam system, which is discretized into a periodic assembly of a specially-constructed track element and a single beam element characterized by their exact dynamic stiffness matrices. An equivalent frequency-dependent spring coefficient representing the resilient, flexural and inertial characteristics of the rail support components is introduced to reduce the degrees of freedom of the track element. The forced vibration equations of motion of the track subjected to a series of loading functions are then formulated by using beam bending theories and are reduced to second order ordinary differential equations through the use of mode summation with non-proportional modal damping. Numerical examples for the dynamic responses of a typical track are presented, and the solutions resulting from different rail/tie beam theories are compared.

밸러스트 탱크의 급수/배수 시간 예측에 관한 연구 (A Study on the Leading/Unloading Time Prediction of the Ballast Tank)

  • 김환익;김문언;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.33-36
    • /
    • 2004
  • The ballast tank of a ship is a system that realizes the required shipping condition and controls the draft of a ship. The loading/unloading of the ballast tank is frequently operated during navigation and the accurate prediction of the loading/unloading time is very important. A numerical algorithm that predicts the loading/unloading time of the ballast tank has been developed and applied to the prediction of the loading/unloading time of the ballast tank with various piping systems. This algorithm can be useful in optimizing the ballast tank system in early design stage.

  • PDF

충돌을 고려한 Dynamic L/UL 슬라이더의 동적 거동 해석 (Analysis of Dynamics of Slider in Dynamic Loading Process considering Collision)

  • 김범준;임윤철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.968-973
    • /
    • 2003
  • Dynamic L/UL system has many merits, but it can develop an undesirable collision during dynamic loading process. In this paper, the dynamics of negative pressure pico slider during the loading process was investigated by numerical simulation. A simplified L/UL model for the suspension system was presented, and a simulation code was built to analyze the motion of the slider. A slider deigns have been simulated at various disk rotating speeds, skew angles of slider. By selection an optimal RPM and pre-skew angle, we can decrease the amount of collision and smoothen the loading process for a given slider-suspension design.

  • PDF

유연 생산시스템에서의 작업할당/경로선정/부품투입순서의 결정 (A multi-objective Loading/Routeing and Sequencing decision in a Flexible Manufacturing System)

  • 이영광;정병희
    • 대한산업공학회지
    • /
    • 제19권4호
    • /
    • pp.41-48
    • /
    • 1993
  • Prime advantage of flexible manufacturing systems(FMS) is a flexibility. Flexibility is expected to prolong the service life of a manufacturing facility and enable it to respond quickly and economically to dynamic market change. The FMS loading decision is concerned with the allocation of operations and tools to machines subject to technological and capacity constraints of the system. Modern FMS loading problem has the multiple objectives such as processing cost, time and work load balance. We propose multi-objectives which could be used to formulate the loading/routeing problem and sequencing decision which should be adopted for each part type in order to maximize the machine flexibility by Hamming distance matrix based on Incidance matrix. Finally, a numerical example is provided to illustrate the proposed model.

  • PDF