• 제목/요약/키워드: Loading density

검색결과 613건 처리시간 0.024초

Thermoelastic analysis of rotating FGM thick-walled cylindrical pressure vessels under bi-directional thermal loading using disk-form multilayer

  • Fatemeh Ramezani;Mohammad Zamani Nejad
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.139-151
    • /
    • 2024
  • In this research, a semi-analytical solution is presented for computing mechanical displacements and thermal stresses in rotating thick cylindrical pressure vessels made of functionally graded material (FGM). The modulus of elasticity, linear thermal expansion coefficient, and density of the cylinder are assumed to change along the axial direction as a power-law function. It is also assumed that Poisson's ratio and thermal conductivity are constant. This cylinder was subjected to non-uniform internal pressure and thermal loading. Thermal loading varies in two directions. The governing equations are derived by the first-order shear deformation theory (FSDT). Using the multilayer method, a functionally graded (FG) cylinder with variable thickness is divided into n homogenous disks, and n sets of differential equations are obtained. Applying the boundary conditions and continuity conditions between the layers, the solution of this set of equations is obtained. To the best of the researchers' knowledge, in the literature, there is no study carried out bi-directional thermoelastic analysis of clamped-clamped rotating FGM thick-walled cylindrical pressure vessels under variable pressure in the longitudinal direction.

The behaviors of a Korean weathered soil under monotonic loadings

  • Sangseom Jeong;Junyoung Ko;Sumin Song;Jaehong Kim
    • Geomechanics and Engineering
    • /
    • 제38권2호
    • /
    • pp.157-164
    • /
    • 2024
  • This paper describes the general trends of the stress-strain behavior of Korean weathered soil prior to failure and behavior at failure under triaxial loading. The isotropically consolidated samples were tested in a testing device under monotonic undrained loading. Relative density, effective mean pressure and fine content were the factors varied in the experimental investigation. The test results were analyzed and their behaviors were interpreted within the framework of plasticity constitutive model for a weathered Korean silty sand. Possible physical bases for the proposed forms are discussed. Validation of the applied model using the laboratory results is also given.

Shearing Properties of Hard Metal Powder and Iron Powder in the Low Density Range

  • Jonsen, P.;Haggblad, H.A.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1296-1297
    • /
    • 2006
  • Both plastic and elastic properties change dramatically from the beginning to the end of the compaction phase. Previous investigations have shown that powder transfer and high powder flow during initial compaction at low density affects the strength of the final component significantly. Investigated here are shear failure and elastic shear modulus in the low density range for hard metal powder and for pre-alloyed water atomized iron powder. Direct shear test equipment for sand and clay has been modified to measure the shearing properties of powder for an axial loading between 1 kPa and 500 kPa.

  • PDF

평균응력을 동반하는 2.2Ni-lCr-0.5Mo강의 피로수명과 변형률에너지 밀도와의 상관관계 (Correlation Between Fatigue Life of 2.2Ni-0.1Cr-0.5Mo Steel Accompanying Mean Stresses with Cyclic Strain Energy Density)

  • 고승기;하정수
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.167-174
    • /
    • 2003
  • Fatigue damage of 2.2Ni-1Cr-0.5Mo steel used fir high strength pressure tubes and vessels was evaluated using uniaxial specimens subjected to strain-controlled fatigue loading. Based on the fatigue test results from different strain ratios of -2. -i 0, 0.5, 0.75, the fatigue damage of the steel was represented by using a cyclic strain energy density. Mean stress relaxation depended on the magnitude of the applied strain amplitude. The high pressure vessel steel exhibited the cyclic softening behavior. Total strain energy density consisting of the plastic strain energy density and the elastic tensile strain energy density described fairly well the fatigue life of the steel, taking the mean stress effects into account. Compared to other fatigue damage parameters, fatigue life prediction by the cyclic strain energy density showed a good correlation with the experimental fatigue lift within a factor of 3.

비귀금속촉매 미생물연료전지의 연속운전을 통한 전기 생산 (Continuous electricity generation in microbial fuel cells with non-precious metal catalysts)

  • 문충만;김동훈
    • 유기물자원화
    • /
    • 제23권1호
    • /
    • pp.45-51
    • /
    • 2015
  • 본 연구에서는 비귀금속 촉매인 iron(II) phthalocyanine (FePc)와 cobalt tetramethoxyphenylporphyrin(CoTMPP)를 환원전극촉매로 이용하여 미생물연료전지의 연속운전을 진행하였다. 연속운전은 유기물 부하 (0.5~3 g COD/L/d)와 HRT (0.25~1 day)의 조건을 달리 운전하여 미생물연료전지의 성능을 평가하였다. 미생물연료전지의 전력밀도는 환원전극의 성능에 크게 영향을 받았으며, 최대전력밀도는 $3.3W/m^3$로 백금을 사용한 미생물연료전지에서 나타났다. 하지만, HRT의 조건을 달리 한 실험에서 FePc를 사용한 미생물연료전지가 백금을 사용한 미생물연료전지와 유사한 성능을 나타냈으며, 연속운전에서 백금 촉매를 대체할 수 있는 적합한 물질로 나타났다. 반면에 CoTMPP를 사용한 미생물연료전지는 연속운전에서 내부 저항의 급격한 증가로 전력밀도가 급격히 감소하였다.

Experimental study of bearing capacity of strip footing on sand slope reinforced with tire chips

  • Keskin, Mehmet Salih;Laman, Mustafa
    • Geomechanics and Engineering
    • /
    • 제6권3호
    • /
    • pp.249-262
    • /
    • 2014
  • Tire chips and tire chips-soil mixtures can be used as alternative fill material in many civil engineering applications. In this study, the potential benefits of using tire chips as lightweight material to improve the bearing capacity and the settlement behavior of sand slope was investigated experimentally. For this aim, a series of direct shear and model loading tests were conducted. In direct shear tests, the effect of contents of the tire chips on the shear strength parameters of sand was investigated. Different mixing ratios of 0, 5, 10, 15 and 20% by volume were used and the optimum mixing ratio was obtained. Then, laboratory model tests were performed on a model strip footing on sand slope reinforced with randomly distributed tire chips. The loading tests were carried out on sand slope with relative density of 65% and the slope angle of $30^{\circ}C$. In the loading tests the percentage of tire chips to sand was taken as same as in direct shear tests. The results indicated that at the same loading level the settlement of strip footing on sand-tire chips mixture was about 30% less than in the case of pure sand. Addition of tire chips to sand increases BCR (bearing capacity ratio) from 1.17 to 1.88 with respect to tire chips content. The maximum BCR is attained at tire chips content of 10%.

Tearing of metallic sandwich panels subjected to air shock loading

  • Zhu, Feng;Lu, Guoxing;Ruan, Dong;Shu, Dong-Wei
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.351-370
    • /
    • 2009
  • This paper presents a computational study for the structural response of blast loaded metallic sandwich panels, with the emphasis placed on their failure behaviours. The fully-clamped panels are square, and the honeycomb core and skins are made of the same aluminium alloy. A material model considering strain and strain rate hardening effects is used and the blast load is idealised as either a uniform or localised pressure over a short duration. The deformation/failure procedure and modes of the sandwich panels are identified and analysed. In the uniform loading condition, the effect of core density and face-sheets thicknesses is analysed. Likewise, the influence of pulse shape on the failure modes is investigated by deriving a pressure-impulse (P-I) diagram. For localised loading, a comparative study is carried out to assess the blast resistant behaviours of three types of structures: sandwich panel with honeycomb core, two face-sheets with air core and monolithic plate, in terms of their permanent deflections and damage degrees. The finding of this research provides a valuable insight into the engineering design of sandwich constructions against air blast loads.

장기하중을 받는 바닥완충재의 처짐 예측 평가 (Evaluation on Expectation of Deflection of Floor Damping Materials Subjected to Long-Term Load)

  • 김정민;홍윤기;김진구;이정윤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권4호
    • /
    • pp.19-26
    • /
    • 2016
  • 최근 층간소음을 저감시키기 위하여 밀도와 동탄성계수가 낮은 바닥완충재를 뜬바닥구조에 사용하며, 이로 인하여 바닥완충재의 처짐 및 상부 마감몰탈의 균열이 발생할 가능성이 높아지고 있다. 이 연구에서는 층간소음 저감을 위하여 사용되는 바닥완충재의 장기처짐을 실험을 통하여 평가하였다. 완충재의 재질, 하부형상, 밀도, 가력하중을 변수로 하는 16개의 바닥완충재에 대하여 490일간의 장기처짐 실험을 하였다. 실험에 의하면 완충재의 장기처짐은 하중가력 200일 시점 이후로 일정한 경향을 보였다. 예외적으로 Polystyrene 재질의 완충재 경우, 250 N 하중재하에서는 160일, 500 N 하중재하에서는 100일 이후로 일정한 경향을 보였다. 이 연구에서는 처짐이 일정해지는 구간을 제외한 증가 구간에 대해 두 가지의 장기처짐 평가식을 작성하였으며, 각각 ISO 20392와 실험값의 추세를 이용한 선형회귀 분석을 이용하였다. 두 평가식과 실험값과의 비교분석에서 처짐량이 10 mm 이하의 경우, ISO 20392와 실험값의 추세를 이용한 선형회귀 분석 방법 모두 오차 0.4 mm 이하로 실제 처짐과 유사하게 나타났다. 단, Polystyrene 재질의 완충재 경우, ISO 20392에 의한 처짐 분석 방법이 더 적절한 것으로 판단되었다.

Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries

  • Choi, Jaecheol;Son, Bongki;Ryou, Myung-Hyun;Kim, Sang Hern;Ko, Jang Myoun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권1호
    • /
    • pp.27-33
    • /
    • 2013
  • The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with $LiCoO_2$ active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g $cm^{-3}$, respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.

수평력을 받는 무리말뚝의 하중분담특성 (The Load Distribution Characteristics of Pile Group under Lateral Loading)

  • 안병철;오세욱
    • 한국지반환경공학회 논문집
    • /
    • 제11권3호
    • /
    • pp.17-22
    • /
    • 2010
  • 본 연구에서는 풍화토 지반에 설치된 수평하중을 받는 H-pile 무리말뚝의 하중분담특성 및 상호작용계수(p-multiplier)를 분석하였다. 말뚝의 배열($2{\times}3$, $3{\times}3$), 말뚝의 간격(2D, 4D, 6D), 그리고 지반밀도(상대밀도:40%, 80%)를 고려한 수평재하 실험을 실시한 결과 다음과 같은 결과를 얻을 수 있었다. 무리말뚝내 각각의 말뚝에 작용된 평균수평하중은 말뚝의 수가 감소할수록 평균수평저항력이 증가하는 것으로 나타났다. 말뚝간격과 지반밀도에 따라 단말뚝과 무리말뚝의 p-y곡선을 분석한 결과 말뚝간격이 2D에서 6D로 증가함에 따라 무리말뚝의 상호작용계수값이 느슨한 지반의 경우 0.85~0.94(앞열말뚝), 0.57~0.79(중간말뚝), 0.60~0.71(후열말뚝), 조밀한 지반의 경우 0.76~0.82(앞열말뚝), 0.58~0.73(중간말뚝), 0.53~0.70(후열말뚝)의 값을 각각 나타냈다. 이와같이 단말뚝과 무리말뚝간 상호작용계수는 말뚝간격이 증가할수록 그 값이 증가함을 알 수 있었으며, 또한 앞열의 무리말뚝이 중간 및 후열말뚝들보다 보다 큰 상호작용계수 값을 나타냈다.