• Title/Summary/Keyword: Loading cycles

Search Result 411, Processing Time 0.024 seconds

Immobilization of Laccase on $SiO_2$ Nanocarriers Improves Its Stability and Reusability

  • Patel, Sanjay K.S.;Kalia, Vipin C.;Choi, Joon-Ho;Haw, Jung-Rim;Kim, In-Won;Lee, Jung Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.639-647
    • /
    • 2014
  • Laccases have a broad range of industrial applications. In this study, we immobilized laccase on $SiO_2$ nanoparticles to overcome problems associated with stability and reusability of the free enzyme. Among different reagents used to functionally activate the nanoparticles, glutaraldehyde was found to be the most effective for immobilization. Optimization of the immobilization pH, temperature, enzyme loading, and incubation period led to a maximum immobilization yield of 75.8% and an immobilization efficiency of 92.9%. The optimum pH and temperature for immobilized laccase were 3.5 and $45^{\circ}C$, respectively, which differed from the values of pH 3.0 and $40^{\circ}C$ obtained for the free enzyme. Immobilized laccase retained high residual activities over a broad range of pH and temperature. The kinetic parameter $V_{max}$ was slightly reduced from 1,890 to 1,630 ${\mu}mol/min/mg$ protein, and $K_m$ was increased from 29.3 to 45.6. The thermal stability of immobilized laccase was significantly higher than that of the free enzyme, with a half-life 11- and 18-fold higher at temperatures of $50^{\circ}C$ and $60^{\circ}C$, respectively. In addition, residual activity was 82.6% after 10 cycles of use. Thus, laccase immobilized on $SiO_2$ nanoparticles functionally activated with glutaraldehyde has broad pH and temperature ranges, thermostability, and high reusability compared with the free enzyme. It constitutes a notably efficient system for biotechnological applications.

Fracture Mechanics Analysis of the Weldment in Pulley for Belt Conveyor (컨베이어용 풀리의 용접부위에 관한 파괴역학 설계기술 개발)

  • Han, Seung-U;Lee, Hak-Ju;U, Chang-Su;Lee, Sang-Rok
    • 연구논문집
    • /
    • s.23
    • /
    • pp.127-140
    • /
    • 1993
  • The drive pulley, which is employed for loading and unloading raw materials in a steel mill, is usually manufactured by use of various welding processes. In this study the weldment in the pulley, in which TIG and $CO_2$ welding processes are used, has been analyzed from view point of fracture mechanics. Fracture toughness tests have been performed according to ASTM E813. A servo-hydraulic testing machine (10kN) has been employed. Also the crack propagation tests (Mode I) have been performed with compact tension specimen in compliance with ASTM E647. To predict the critical crack size in the weldment, finite element stress analysis for the drive pulley under real operating conditions have been performed. In addition, the residual stresses at the weldment and in heat-affected zone have been obtained by hole drilling method. The planar critical crack size have been predicted for the drive pulley by considering the stress analysis results and the residual stresses due to welding process. For the drive pulley considered in this study, it has been concluded that the most important factor in determining the critical crack size is the welding residual stress in the transverse direction. Also the effect of stress concentration at the root of the weldment have been noticeable. For the planar crack, the fatigue crack growth life from an initial crack size of 2mm to the critical crack size obtained as in the above have been predicted. The predicted lives were between 55, 900 and 72, 000 cycles depending on the shape of the elliptical crack. The predicted lives were in fairly good agreement for the drive pulley considered in this study.

  • PDF

Radiolytic Synthesis of Ag-Loaded Polystyrene(Ag-PS) Nanoparticles and Their Antimicrobial Efficiency Against Staphylococcus aureus and Klebsiella pneumoniase

  • Oh, Seong-Dae;Byun, Bok-Soo;Lee, Seung-Ho;Choi, Seong-Ho;Kim, Moon-Il;Park, Hyun-Gyu
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • Ag nanoparticles were distributed onto polystyrene nanoparticle (PS-Ag) beads using two synthetic methodologies. In the first methodology, polystyrene (PS) beads were prepared via emulsion polymerization, with Ag nanoparticles subsequently loaded onto the surface of the PS beads. The polymerization of styrene was radiolytically induced in an ethanol (EtOH)/water medium, generating PS beads. Subsequently, Ag nanoparticles were loaded onto the PS beads via the reduction of Ag ions. The results from the morphological studies, using field emission transmission electron microscopy (FE-TEM), reveal the PS particles were spherical and nanosized, and the average size of the PS spherical particles decreased with increasing volume % of water in the polymerization medium. The size of the PS spherical particles increases with increasing radiation dose for the polymerization. Also, the amount of Ag nanoparticle loading could be increased by increasing the irradiation dose for the reduction of the Ag ions. In the second methodology, the polymerization of styrene and reduction of Ag ions were simultaneously performed by irradiating a solution containing styrene and Ag ions in an EtOH/water medium. Interestingly, the Ag nanoparticles were preferentially homogeneously distributed within the PS particles (not on the surface of the PS particles). Thus, Ag nanoparticles were distributed onto the surface of the PS particles using the first approach, but into the PS clusters of the particles via the second. The antimicrobial efficiency of a cloth coated with the Ag-PS composite nanoparticles was tested against bacteria, such as Staphylococcus aureus and Klebsiella pneumoniase, for 100 water washing cycles.

Effect of ferrule on the fracture resistance of mandibular premolars with prefabricated posts and cores

  • Kim, Ae-Ra;Lim, Hyun-Pil;Yang, Hong-So;Park, Sang-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.328-334
    • /
    • 2017
  • PURPOSE. This study evaluated fracture resistance with regard to ferrule lengths and post reinforcement on endodontically treated mandibular premolars incorporating a prefabricated post and resin core. MATERIALS AND METHODS. One hundred extracted mandibular premolars were randomly divided into 5 groups (n=20): intact teeth (NR); endodontically treated teeth (ETT) without post (NP); ETT restored with a prefabricated post with ferrule lengths of either 0 mm (F0), 1 mm (F1), or 2 mm (F2). Prepared teeth were restored with metal crowns. A thermal cycling test was performed for 1,000 cycles. Loading was applied at an angle of 135 degrees to the axis of the tooth using a universal testing machine with a crosshead speed of 2.54 mm/min. Fracture loads were analyzed by one-way ANOVA and Tukey HSD test using a statistical program (${\alpha}=.05$). RESULTS. There were statistical differences in fracture loads among groups (P<.001). The fracture load of F2 ($237.7{\pm}83.4$) was significantly higher than those of NP ($155.6{\pm}74.3N$), F0 ($98.8{\pm}43.3N$), and F1 ($152.8{\pm}78.5N$) (P=.011, P<.001, and P=.008, respectively). CONCLUSION. Fracture resistance of ETT depends on the length of the ferrule, as shown by the significantly increased fracture resistance in the 2 mm ferrule group (F2) compared to the groups with shorter ferrule lengths (F0, F1) and without post (NP).

Performance of Ru-based Preferential Oxidation Catalyst and Natural Gas Fuel Processing System for 1 kW Class PEMFCs System (Ru계 촉매의 CO 선택적 산화 반응 및 1 kW급 천연가스 연료처리 시스템의 성능 연구)

  • Seo, Yu-Taek;Seo, Dong-Joo;Seo, Young-Seog;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • KIER has been developing a Ru-based preferential oxidation catalysts and a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. The catalytic activity of Ru-based catalysts was investigated at different Ru loading amount and different support structure. The obtained result indicated that 2 wt% loaded Ru-based catalyst supported on ${\alpha}-Al_2O_3$ showed high activity in low temperature range and suppressed the methanation reaction. The developed prototype fuel processor showed thermal efficiency of 78% as a HHV basis with methane conversion of 92%. CO concentration below 10 ppm in the produced gas is achieved with separate preferential oxidation unit under the condition of $[O_2]/[CO]=2.0$. The partial load operation have been carried out to test the performance of fuel processor from 40% to 80% load, showing stable methane conversion and CO concentration below 10 ppm. The durability test for the daily start-stop and 8 h operation procedure is under investigation and shows no deterioration of its performance after 50 start-stop cycles. In addition to the system design and development.

Performance Assessment of Solid Reinforced Concrete Columns with Triangular Reinforcement Details (삼각망 철근상세를 갖는 중실 철근콘크리트 기둥의 성능평가)

  • Kim, Tae-Hoon;Lee, Seung-Hoon;Lee, Jae-Hoon;Shin, Hyun Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • The purpose of this study was to investigate the performance of solid reinforced concrete columns with triangular reinforcement details. The proposed reinforcement details has economic feasibility and rationality and makes construction periods shorter. A model of solid reinforced concrete columns with triangular reinforcement details was tested under a constant axial load and a quasi-static, cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. The used numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated. As a result, proposed triangular reinforcement details for material quantity reduction was superior to existing reinforcement details in terms of required performance.

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena;Hahnel, Sebastian;Behr, Michael;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.300-307
    • /
    • 2018
  • PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

Analysis of Thermo-Acoustic Emission from Damage in Composite Laminates under Thermal Cyclic Loading (열하중을 받는 복합재료 적층판의 손상에 대한 열-음향방출해석)

  • Kim, Young-Bok;Min, Dae-Hong;Lee, Deok-Bo;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.261-268
    • /
    • 2001
  • An investigation on nondestructive evaluation of thermal stress-nduced damage in the composite laminates (3mm in thickness and $[+45_6/-45_6]_s$ lay-up angles) has been performed using the thermo-acoustic emission technique. Reduction of thermo-AE events due to repetitive thermal load cycles showed a Kaiser effect. An analysis of the thermo-AE behavior determined the stress free temperature of composite laminates. Fiber fracture and matrix cracks were observed using the optical microscopy, scanning electron microscopy and ultrasonic C-sean. Short-Time Fourier Transform of thermo-AE signals offered the time-frequency characteristics which might classily the thermo-AE as three different types to estimate the damage processes of the composites.

  • PDF

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.