• 제목/요약/키워드: Loading condition

Search Result 1,887, Processing Time 0.029 seconds

Characteristics of Bearing Capacity and Reliability-based Evaluation of Pile-Driving Formulas for H Pile (H-pile의 지지력 특성 및 동역학적 공식의 신뢰도 평가)

  • 오세욱;이준대
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.81-88
    • /
    • 2003
  • Recently, pile foundations were constructed in rough or soft ground than ground of well condition thus it is important that prediction of ultimate bearing capacity and calculation of proper safety factor applied pile foundation design. This study were performed to dynamic loading tests for the thirty two piles at four different construction sites and selected pile at three site were performed to static loading tests and then compare with measured value and value of static and dynamic loading tests. The load-settlement curve form the dynamic loading tests by CAPWAP was very similar to the results obtained from the static load tests. Based on dynamic and static loading tests, the reliability of pile-driving formula were analyzed and then suggested with proper safety factor for prediction of allowable bearing capacity in this paper.

Determination of Deformation Behavior of the Al6060-T6 under high Strain Rate Tensile Loading Using SHPB Technique (SHPB 기법을 이용한 A16061-T6의 고속 인장 변형거동 규명)

  • Lee, Eok-Seop;Kim, Gwan-Hui;Hwang, Si-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3033-3039
    • /
    • 2000
  • Mechanical properties of the materials used for transportations and industrial machinery under high stain rate loading conditions have been required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material properties under high strain rate loading condition. There have been many studies on the material behavior under high strain rate compressive loading compared to those under tensile loading. In this paper, mechanical properties of the aluminum alloy, Al6061-T6, under high strain rate tensile loading were determined using SHPB technique.

Analysis of Internal Loading at Multiple Robotic Systems

  • Chung Jae Heon;Yi Byung-Ju;Kim Whee Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1554-1567
    • /
    • 2005
  • When multiple robotics systems with several sub-chains grasp a common object, the inherent force redundancy provides a chance of utilizing internal loading. Analysis of grasping space based internal loading is proposed in this work since this method facilitates understanding the physical meaning of internal loadings in some applications, as compared to usual operational space based approach. Investigation of the internal loading for a triple manipulator has been few as ,compared to a dual manipulator. In this paper, types of the internal loading for dual and triple manipulator systems are investigated by using the reduced row echelon method to analyze the null space of those systems. No internal loading condition is derived and several load distribution schemes are compared through simulation. Furthermore, it is shown that the proposed scheme based on grasping space is applicable to analysis of special cases such as three-fingered and three-legged robots having a point contact with the grasped object or ground.

A Study on Ship's Maneuverability Evaluation by Real Ship Test (선박조종성능 평가를 위한 실선 실험연구)

  • Im, Nam-Kyun;Han, Song-Hee;Nguyen, Thanh Nhat Lai
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • At the design stage, it is very important to know the ship maneuvering characteristics from the view point of ship performance and for the safety of navigation. IMO only gives some criteria for ships in full load even keel condition. However, the ship generally is operated not only in full load condition but also in half load condition or ballast condition. Therefore we must estimate the ship maneuvering in different loading condition to ensure that the ship will satisfy with IMO rules and navigate safely in every condition. In this paper, we have investigated the maneuvering characteristics of a ship by simulation and experiments with real ship. By comparing with the results of simulation, the real ship tests conform with simulation test and previous researches. Therefore, the method base on real data is well done to estimate the ship maneuvering in different loading conditions. The change of ship's manoeuverability accoriding to ship's operation conditions was estimated.

Inducing stress-strain relationship for element simulation of cyclic triaxial test on unsaturated soil (불포화토에 대한 반복삼축압축시험의 요소시뮬레이션을 위한 응력-변형율 관계의 수립)

  • Lee, Chung-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5654-5663
    • /
    • 2015
  • In the unsaturated soil, suction, the negative pore water pressure leads to increases of the yield stress and the plastic shear stiffness of the soil skeleton due to the growth in interparticle stress. Therefore, in this study, the stress-strain relationship based on cyclic elasto-plastic constitutive model extended for unsaturated soil considering the 1st and the 2nd yield functions was induced in order to account for these effects of suction under the dynamic loading condition such as the earthquake. Through the program code considering this relationship and the routine of the cyclic loading with the reversion of loading direction, the numerical simulation of the cyclic triaxial test under the unsaturated condition would be possible. It is expected that the results of this study possibly contribute to the accuracy improvement on the prediction of unsaturated soil behavior under the dynamic loading condition.

Threshold Condition for the Propagation of Short Fatigue Crack (炭素鋼 微小疲勞크랙 전파의 不限界條件)

  • 김민건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.505-512
    • /
    • 1988
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the microstructure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the '||'&'||'quot;critical non-propagating crack length.'||'&'||'quot; It is found that the reduction of the endurance limit of their particular microstructures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress .DELTA. .sigma. $_{th}$ and the critical non-propagating crack length Lc can be written as .DELTA. .sigma. $_{th}$, Lc=C where m, C is constant. Further experiments were carried out on the effect of pearlitic structure and cyclic loading history on the length of critical non-propagating crack. It is shown that the length of critical non-propagating crack is closely related to both pearlite interlamellar spacing and cyclic loading history.ory. cyclic loading history.

Quasi-Static Structural Optimization Technique Using Equivalent Static Loads Calculated at Every Time Step as a Multiple Loading Condition (매 시간단계의 등가정하중을 다중하중조건으로 이용한 준정적 구조최적화 방법)

  • Choe, U-Seok;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2568-2580
    • /
    • 2000
  • This paper presents a quasi-static optimization technique for elastic structures under dynamic loads. An equivalent static load (ESL) set is defined as a static load set which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at every time step are employed to represent the various states of the structure under the dynamic load. They can cover every critical state that might happen at an arbitrary time. Continuous characteristics of dynamic load are simulated by multiple discontinuous ones of static loads. The calculated sets of ESLs are applied as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. Design cycles are repeated until a design converges. The analysis domain gives a loading condition necessary for the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. This iterative process is quite similar to that of the multidisciplinary optimization technique. Even though the global convergence cannot be guaranteed, the proposed technique makes it possible to optimize the structures under dynamic loads. It has also applicability, flexibility, and reliability.

Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning

  • Lydon, Darragh;Taylor, S.E.;Lydon, Myra;Martinez del Rincon, Jesus;Hester, David
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.723-732
    • /
    • 2019
  • Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.

On the Flexural Strengthening Effect of the CFS Strengthened RC Beam under Pre-Loading Condition (가력중 탄소섬유로 보강된 RC보의 휨보강 효과)

  • Song, Won-Young;Jang, Hee-Suk;Cha, Young-Soo;Lee, Hong-Ju;Kim, Hee-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.92-95
    • /
    • 2004
  • The flexural strengthening effect of the RC beam strengthened with CFS under pre-loading condition was studied here. The beams were additionally strengthened at the each end with U type wrapping using the same CFS. Main variables considered were number of CFS plies(1,2) and pre-loading values(30,50,$70\%$ of the yield load of the control beam). The flexural strengthening effect was investigated through comparing the yield load, ultimate load, and ductility index of the specimens.

  • PDF

Experimental Data Analysis using Computational Numerical Analysis on the Response of One-way Reinforced Concrete Slab under Blast Loading (전산수치해석을 이용한 일방향 철근콘크리트 부재의 폭발 실험결과 분석)

  • Ji, Hun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.424-434
    • /
    • 2016
  • A few blast experiments are conducted to investigate the behavior of one-way reinforced concrete(RC) slabs under blast loading. Reflected blast characteristics as well as displacements and damage patterns of RC slabs are measured. Numerical models are also established in the software ANSYS AUTODYN to reproduce the experiments on RC slabs. The numerical models are distinguished from each other by different boundary conditions at the edges of RC slabs, which are assumed to reproduce displacements and damage patterns resulted from the experiments. The boundary condition of the experimental tests is estimated from the numerical simulation results. From the numerical simulation results, the boundary condition should be improved in order to measure the accurate maximum displacement in the experimental tests.