• Title/Summary/Keyword: Loading Simulation

Search Result 1,148, Processing Time 0.024 seconds

Prediction of Crack Growth in 2124-7851 Al-Alloy Under Flight-Simulation Loading (비행하중하에서 2124-T851 알루미늄합금의 피로균열진전 예측)

  • Sim, Dong-Seok;Hwang, Don-Yeong;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1487-1494
    • /
    • 2002
  • In this study, to propose the prediction method of the crack growth under flight-simulation loading, crack growth tests are conducted on 2124-7851 aluminum alloy specimens. The prediction of crack growth under flight-simulation loading is performed by the stochastic crack growth model which was developed in previous study. First of all, to reduce the complex load history into a number of constant amplitude events, rainflow counting is applied to the flight-simulation loading wave. The crack growth, then, is predicted by the stochastic crack growth model that can describe the load interaction effect as well as the variability in crack growth process. The material constants required in this model are obtained from crack growth tests under constant amplitude loading and single tensile overload. The curves predicted by the proposed model well describe the crack growth behavior under flight-simulation loading and agree with experimental data. In addition, this model well predicts the variability of fatigue lives.

Nonlinear numerical simulation of RC columns subjected to cyclic oriented lateral force and axial loading

  • Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.745-765
    • /
    • 2015
  • A nonlinear Finite Element (FE) algorithm is proposed to analyze the Reinforced Concrete (RC) columns subjected to Cyclic Loading (CL), Cyclic Oriented Lateral Force and Axial Loading (COLFAL), Monotonic Loading (ML) or Oriented Pushover Force and Axial Loading (OPFAL) in any direction. In the proposed algorithm, the following parameters are considered: uniaxial behavior of concrete and steel elements, the pseudo-plastic hinge produced in the critical sections, and global behavior of RC columns. In the proposed numerical simulation, the column is discretized into two Macro-Elements (ME) located between the pseudo-plastic hinges at critical sections and the inflection point. The critical sections are discretized into Fixed Rectangular Finite Elements (FRFE) in general cases of CL, COLFAL or ML and are discretized into Variable Oblique Finite Elements (VOFE) in the particular cases of ML or OPFAL. For pushover particular case, a fairly fast converging and properly accurate nonlinear simulation method is proposed to assess the behavior of RC columns. The proposed algorithm has been validated by the results of tests carried out on full-scale RC columns.

The Effect on Fatigue Crack Growth due to Omitting Low-amplitude Loads from Variable Amplitude Loading (변동하중에서 미소하중의 제거가 균열진전에 미치는 영향)

  • Shim, D.S.;Lee, S.H.;Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.11-16
    • /
    • 2004
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests were conducted on 2124-T851 aluminum alloy specimens. Three test spectra were generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results were compared with the data obtained from the flight-simulation loading. The experimental results show that the ranges equal to or smaller than 5% of the maximum load do not contribute to crack growth behavior because these are below the initial stress intensity factor range. Omitting these from the flight-simulation loading, test time can be reduced by 54%. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decreased, and crack growth curve deviated from the crack growth data under the flight-simulation loading because loading cycles above fatigue fracture toughness were omitted.

  • PDF

The Effect of Low-amplitude Cycles in Flight-simulation Loading (비행하중에서 피로균열진전에 미치는 미소하중의 영향)

  • Shim, Dong-Suk;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1045-1050
    • /
    • 2003
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests are conducted on 2124-T851 aluminum alloy specimens. Three test spectra are generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results are compared with the data obtained from the flight-simulation loading. The experimental results show that omission of the load ranges below 5% of the maximum load does not significantly affect crack growth behavior, because these are below the initial stress intensity factor range. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decrease, and therefore crack growth curve deviates from the crack growth data under the flight-simulation loading. To optimize the load range that can be omitted, crack growth curves are simulated by the stochastic crack growth model. The prediction shows that the omission level can be extended to 8% of the maximum load and test time can be reduced by 59%.

  • PDF

Analysis of Loading/Unloading Activity for Efficient Urban Goods Movement Plan - Focusing on Chiba City -

  • Park Sang-Chul;Yun Jeong-Mi
    • Journal of Navigation and Port Research
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2005
  • Pick-up/delivery of consumer goods to offices, shops, and restaurants in order to support urban lives is one of the most vital activities in a city. With economic growth and technological innovation, a greater variety of goods have come to be supplied, and pick-up/delivery of consumer goods has become more complex. Efficient urban goods movement in Central Business District(CBD} starts with an efficient system for loading/unloading, and pick-up/delivery activities. Loading/unloading activity may be carried out on-street, or on especially designated space inside or outside buildings. Therefore, purpose of this study is to clarity the efficient urban goods movement in CBD(also called the pick-up/delivery activity) from the three different types of loading/unloading facilities. For this purpose, the differences in loading/unloading and truck-trip activity time of each loading/unloading facility was compared by performing the simulation analysis.

Model based Simulation of Container Loading/Unloading

  • Lee, Soon-Sup
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.170-175
    • /
    • 2012
  • Currently, most logistics use containers. The construction of new port and high speed medium size container ship for the transportation of merchandise have become very important. The problem of ship stability is also important because of its direct influence on the loss of human life, ships, and merchandise. The stability of a container ship during its operation is not a large problem because it is well considered in the design process. However, the assessment of ship stability during container loading/unloading in port still depends on the expertise of experienced personnel. In this paper, a model based simulation system is introduced, which is able to assess ship stability during container loading/unloading, using ENVISION, a general purpose simulation system.

Methodology for numerical evaluation of fracture resistance under pinch loading of spent nuclear fuel cladding containing reoriented hydrides

  • Seyeon Kim;Sanghoon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1975-1988
    • /
    • 2024
  • It is important to maintain cladding integrity in spent nuclear fuel management. This study proposes a numerical analysis method to evaluate the fracture resistance of irradiated zirconium alloy cladding under pinch load known to cause Mode-III failure. The mechanical behavior and fracture of the cladding under pinch loading can be evaluated by a Ring Compression Test (RCT). To simulate the fracture of hydride precipitates, zirconium matrix, and Zr/hydride interfaces under the stress field generated by RCT, a micro-structure crack propagation simulation method based on Continuum Damage Mechanics (CDM) has been proposed. Our RCT simulation model was constructed from microscopic images of irradiated cladding. In this study, we developed an automated process to generate a pixel-based finite element model by separating the hydride precipitates, zirconium matrix, and interfaces using an image segmentation method. The appropriate element size was selected to ensure the efficiency and accuracy of a crack propagation simulation. The load-displacement curves and strain energies from RCT were compared and analyzed with the simulation results of different element sizes. The finalized RCT simulation model can be used to establish the failure criterion of fuel rods under pinch loading. The advantages and limitations of the proposed method are fully discussed here.

Temperature and Loading-Rate Dependence on the Mechanical Behavior of Carbon Nanotubes (탄소나노튜브의 역학적 거동에 관한 온도와 하중부하속도의 의존성)

  • Jeong Byeong-Woo;Lim Jang-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.809-815
    • /
    • 2006
  • The temperature and loading-rate dependence on the mechanical behavior of single-walled carbon nanotubes under axial compression and torsion is examined with classical molecular dynamics simulation. The critical buckling is found to depend on the temperature and loading-rate. The yielding under torsion is also found to depend on the temperature and loading-rate. But it is shown that the compression and torsional stiffness are independent of the varied temperatures and loading-rates.

Analysis of Dynamics of Slider in Dynamic Loading Process considering Collision (충돌을 고려한 Dynamic L/UL 슬라이더의 동적 거동 해석)

  • Kim, Bum-Joon;Rhim, Yoon-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.968-973
    • /
    • 2003
  • Dynamic L/UL system has many merits, but it can develop an undesirable collision during dynamic loading process. In this paper, the dynamics of negative pressure pico slider during the loading process was investigated by numerical simulation. A simplified L/UL model for the suspension system was presented, and a simulation code was built to analyze the motion of the slider. A slider deigns have been simulated at various disk rotating speeds, skew angles of slider. By selection an optimal RPM and pre-skew angle, we can decrease the amount of collision and smoothen the loading process for a given slider-suspension design.

  • PDF

Analysis of Slider Dynamics in Loading Process considering Collision (충돌을 고려한 Dynamic L/UL 슬라이더의 동적 거동 해석)

  • Kim, Bum-Joon;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • Dynamic L/UL(Load/Unload) system has many merits. but it may happen an undesirable collision during the dynamic loading process. In this paper, the dynamics of negative pressure pico-slider was investigated through numerical simulation during the loading process. A simplified L/UL model for the suspension system has been presented and a simulation code has been developed to analyze the motion of the slider. A slider design has been simulated at various disk rotating speeds, skew angles of slider. We can decrease the possibility of collision and smoothen the loading process for a given slider-suspension design by selection an optimal rpm and pre-skew angle.

  • PDF