• 제목/요약/키워드: Loading Shedding Technique

검색결과 3건 처리시간 0.021초

혼합모드 I+II 피로 하한계 영역에서의 모드II 영향에 관한 고찰

  • 홍석표;송삼홍;이정무
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.113-113
    • /
    • 2004
  • 실제 사용중인 기계나 기계구조물은 다양한 환경 및 복잡한 설계조건으로 인하여 변동하중과 다축에서 작용하는 혼합모드 하중 상태에 놓이는 경우가 대부분이다. 하지만, 순수 모드 I 하중상태 하에서의 연구는 활발히 이루어졌으나, 실제 구조물에서 대부분 발생하는 혼합모드 하중상태 하에서의 연구는 아직 부족한 실정이다. 또한 기계구조물내의 많은 성분요소에 존재하는 작용 하중 방향에 수직적이지 않게 되며, 초기균열의 균열선상에서 성장하지 않는다.(중략)

  • PDF

손실감도지표의 전력계통 적용 (Applications of System Loss Sensitivity Index to Power Systems)

  • 이상중
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권2호
    • /
    • pp.56-61
    • /
    • 2000
  • In the paper, the system loss sensitivity index that implies the incremental system loss with respect to the change of bus power is derived using optimization technique. The index λ reaches $\infty$ at critical loading point and can be applied to actual power systems for following purposes. 1) Evaluation of system voltage stability 2)Optimal investment of reactive power focused on minimizing system loss and maximizing system voltage stability 3)Optimal re-location of reactive power focused on minimizing system loss and maximizing system voltage stability 4)Optimal load shedding in case of severe system contingency focused on minimizing system loss and maximizing system voltage stability. Case studies for each application have proved their effectiveness.

  • PDF

3-D wind-induced effects on bridges during balanced cantilever erection stages

  • Schmidt, Stefan;Solari, Giovanni
    • Wind and Structures
    • /
    • 제6권1호
    • /
    • pp.1-22
    • /
    • 2003
  • Nowadays balanced cantilever construction plays an essential role as a sophisticated erection technique of bridges due to its economical and ecological advantages. Experience teaches that wind has a great importance with regard to this construction technique, but methods proposed by codes to take wind effects into account are still rather crude and, in most cases, completely lacking. Also research in this field is quite limited and aimed at studying only the longitudinal shear and the torque at the pier base, caused by the mean wind velocity and by the longitudinal turbulence actions over the deck. This paper advances the present solutions by developing a new procedure that takes into account all wind effects both on the deck and on the pier. The proposed model assumes the mean wind velocity as orthogonal to the bridge plane and considers the effects produced by all the three turbulence components and by the vortex shedding. The applications point out the role of each loading component on different bridge configurations and show that disregarding the presence of some effects may imply oversimplified results and relevant underestimations.