• Title/Summary/Keyword: Loading Operation

Search Result 776, Processing Time 0.026 seconds

A Heuristic Algorithm for Tool Loading and Scheduling in a Flexible Manufacturing System with an Automatic Tool Transporter (공구이송이 가능한 유연제조시스템에서의 공구 할당 및 스케쥴링을 위한 발견적 기법)

  • Park, Sang-Sil;Kim, Yeong-Dae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.1
    • /
    • pp.119-135
    • /
    • 1995
  • We consider problems of tool loading and scheduling in a flexible manufacturing system (FMS) in which tool transportation constitutes the major portion of material flows. In this type of FMSs, parts are initially assigned to machines and released to the machines according to input sequencing rules. Operations for the parts released to the machines are performed by tools initially loaded onto the machines or provided by an automatic tool transport robot when needed. For an efficient operation of such systems, therefore, we may have to consider loading and scheduling problems for tools in addition to those for parts. In this paper, we consider three problems, part loading, tool loading, and tool scheduling problems with the overall objective of minimizing the makespan. The part loading problem is solved by a method similar to that for the bin packing problem and then a heuristic based on the frequency of tool usage is applied for tool loading. Also suggested are part input sequencing and tool scheduling rules. To show the effectiveness of the overall algorithm suggested here, we compare it with an existing algorithm through a series of computational tests on randomly generated test problems.

  • PDF

Assignment and Operation Sequencing for Remarshalling of a Vertical Yard Block in Automated Container Terminals (자동화 컨테이너 터미널에서 수직형 블록의 이적작업을 위한 할당 및 작업순서)

  • Bae Jong-Wook;Park Young-Man;Kim Kap-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.457-464
    • /
    • 2006
  • Remarshalling operation is one of the operations considered important in an automated container terminal to perform quickly loading operations and delivery operations. It arranges the containers scattered at a verticla yard block in order to reduce the transfer time and the rehandling time of ATC(Automated Transfer Crane)s. This paper deals with the remarshalling planning problem minimizing the weighted operation time. This problem can be decomposed into 2 subproblems, storage space assignment problem and operation sequencing problem Storage space assignment problem decides to where containers are transported in terms of transportation time cost.. With results of a previous subproblem, operation sequence problem determines the ATC operation sequence, which minimizes the dead-heading of ATC This study formulates each subproblem with mixed integer program and dynamic program. To illustrate the proposed model, we propose an instance to explain the process of remarshalling planning.

Research on the Design and Economic Analysis for the Operation of Cargo Batch Loading and Unloading Systems (일괄 하역장비 운영을 위한 하역작업장 설계 및 경제성 분석에 관한 연구)

  • Kang, Moo-Hong;Lee, Suk;Chu, Yaung-Gil;Choi, Sang-Hei;Won, Seung-Hwan;Cho, Sung-Woo;Kim, Woo-Sun
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The dynamic nature of mechanization and automation to improve productivity and safety within logistics centers, has necessitated various studies to support efficient and safe working conditions for workers. However, accidents in the loading dock occur frequently as workers and forklift trucks operate within the same space. This research introduces cargo batch loading and unloading systems, which enable increasing productivity and safety through the use of mechanization and automation in the loading dock. To assist efficient operation of this new system, four pieces of general-purpose equipment or three pieces of dedicated equipment are deemed to be essential. Moreover, the floor area of the loading dock is designed to accommodate $256.28m^2$ and $207.00m^2$ for the general-purpose and dedicated systems respectively, in addition to the space allocated for equipment and additional space. The design of the loading dock considers the area of the loading dock as well as the cargo batch loading and unloading systems. Economic analysis, such as NPV, IRR, and PBT, were conducted in addition to sensitivity analysis on key variables.

Model based Simulation of Container Loading/Unloading

  • Lee, Soon-Sup
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.170-175
    • /
    • 2012
  • Currently, most logistics use containers. The construction of new port and high speed medium size container ship for the transportation of merchandise have become very important. The problem of ship stability is also important because of its direct influence on the loss of human life, ships, and merchandise. The stability of a container ship during its operation is not a large problem because it is well considered in the design process. However, the assessment of ship stability during container loading/unloading in port still depends on the expertise of experienced personnel. In this paper, a model based simulation system is introduced, which is able to assess ship stability during container loading/unloading, using ENVISION, a general purpose simulation system.

A loading and sequencing problem in a random FMS (다목적을 고려한 FMS작업할당/경로선정과 분배규칙에 관한 연구)

  • 장영기;조재용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.201-210
    • /
    • 1996
  • Although FMS implementation in Korea is not yet mature, the worldwide empirical data shows the diffusion of FMS is inevitable in near future. As the reletionships between the high capital cost and the relative benefits and advantages are complex to analyse, it is rather beneficial to prepare the effective operation strategies which exploit the FMS flexibility, such as machine loading with alternative routing and dispatching rules. This paper shows the formulation applying a goal programming model for the loading problem with objectives of minimizing the production cost and maximizing the machine utilization, including constraints such as machine tool capacity and demands, etc. A realistic random FMS model is developed for illustration. Since loading and dispatching are a composite of two interdependent tasks, simulation is made to investigate the interactions between the two.

  • PDF

Structural Design of Cargo Handling System for the Yellow Sea Area (황해형 하역시스템의 구조설계)

  • Kim, Kyung-Su;Son, Choong-Yul;Shin, Hyun-Il;Lee, Man-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.18-25
    • /
    • 1999
  • Western coastal ports of Korea experience severe tidal range with up to 9.7 meter between high and low tides. The significant water level variation implicates many operational difficulties during loading and un-loading from cargo ships. To overcome problems due to tide and to secure the continuous loading operation, a new loading system for container cargo called "container pallet system" is developed and introduced in the paper. Three types of structure forms, offshore structural deck, double bottom structural form and the mixed form, are inverstigated with MSC/NASTRAN software. The results prove that the mixed type structure with truss enforcement is found to be the most appropriate for the region.

  • PDF

The Workload Distribution Problems in a Class of Flexible Manufacturing Systems

  • Kim, Sung-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.1
    • /
    • pp.65-75
    • /
    • 1989
  • This study complements the previous studies on workload distribution problems in Flexible Manufacturing Systems. Specifically, we consider the problem in two perspectives, the long-range policy and the short and medium-term planning and control. The long-term loading policy focusses on identifying the optimal loading of the system characterized by either balanced loading or unique unbalanced loading for which a steepest ascent method is developed. These results are then applied to study the optimal medium and short-term planning and control problems, for which a truncated dynamic programming method is developed in order to obtain the optimal allocation of the given operation mix of part types to work stations.

  • PDF

Simulation of Container Leading/Unloading Operation Using Simulation Based Design Methodology (시뮬레이션 기반의 설계기법을 이용한 컨테이너 적.양하 시뮬레이션)

  • 김홍태;이순섭;이종갑;장동식
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.2
    • /
    • pp.33-46
    • /
    • 2001
  • Recently, the usage of containers in marine transportation is rapidly increasing. The problem of ship stability is important because of its direct influence to the loss of the human-life, ship, and merchandise. However, the assessment for ship stability during container loading/unloading in port is dependent on human experience only. On the other hand, the emerging information and communication technologies of shipbuilding industrial environments are rapidly changing. To respond to the situation, a new paradigm has been matured with new concepts such as the concrete method. Especially, all the efforts are shown to be concentrated to realize the concept of Simulation Based Design(SBD) based on three dimensional Computer Aided Design(CAD) model. In this paper, ship model-based simulation methodology for design and operation of ship is suggested, and for the verification of suggested methodology, the system for stability assessment of ship during container loading/unloading was developed using ENVISION, a general-purpose simulation system. The developed system consists of geometric modeling subsystem, basic calculation subsystem, and Computer Aided Engineering(CAE) subsystem. In addition, interface to CAE/CAD /simulation system such as SIKOB and ENVISION is provided.

  • PDF

Operation Characteristics of the SBR Process with Electro-Flotation (EF) as Solids-liquid Separation Method (전해부상을 고액분리 방법으로 적용한 SBR 공정의 운전 특성)

  • Park, Minjeong;Choi, Younggyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.340-344
    • /
    • 2008
  • Electro-flotation (EF) was applied to a sequencing batch reactor process (SBR) in order to enhance solids-liquid separation. Solids-liquid separation was good enough in the SBR coupled with EF (EF-SBR) and it was possible to maintain the concentration of mixed liquor suspended solids (MLSS) high in the EF-SBR. Under moderate organic loading condition (COD loading rate: 6 g/day), control SBR (C-SBR) showed similar treatment efficiencies with the EF-SBR. Under high organic loading condition (COD loading rate: 9.6 g/day), the solids-liquid separation in the C-SBR was deteriorated due to proliferation of filamentous bulking organisms at high F/M ratio. However, the EF-SBR was operated stably and with the high MLSS concentration (above 4,000 mg/L) regardless of the organic loading conditions during overall operating period leading to the satisfactory effluent quality. Gas production rate of the electrodes was gradually decreased because of anodic corrosion and scale build-up at the surface of cathode. However it could be partially overcome by use of corrosion-proof electrode material (SUS-316 L) and by periodic current switching between the electrodes.

Structural Safety Evaluation of Marine Loading Arm Using Finite Element Analysis (유한요소해석을 이용한 해양 로딩암의 구조안전성 평가)

  • Song, Chang Yong;Choi, Ha Young;Shim, Seung Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • This paper presents a structural design review of a marine loading arm used for the fluid transfer of a liquid cargo from a ship or offshore plant. The marine loading arm is installed on a ship, offshore plant, or jetty in order to load or unload liquid cargo such as crude oil, liquefied natural gas (LNG), chemical products, etc. The structural design of this marine loading arm is obliged to comply with the design and construction specifications regulated by the oil companies and international marine forum (OCIMF). In this paper, the structural safety of the initial design for the marine loading arm is evaluated for the design load conditions required by various operational modes. The evaluated results based on a finite element analysis (FEA) are reviewed in relation to the OCIMF specifications.