• Title/Summary/Keyword: Loading Automation

Search Result 105, Processing Time 0.022 seconds

The Design of Automation Simulation System For Efficient Logistics Management (물류의 효율적 관리를 위한 자동화 시뮬레이션 시스템 설계)

  • Kim, Sang-Hyun;Lee, Woo;Oh, Seung-Hong;Lee, Ju-Wan;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.187-192
    • /
    • 2022
  • In the current container port, the containers standardized by the automated operating system using the latest information and communication technology are systematically made according to the optimal stowage planning. However, loading of steel coils with a unit weight of several tens of tons is still performed manually, which is very inefficient. As a result, work is delayed and safety accidents occur frequently. In this study, an automated simulation system for loading steel coils was designed to prevent misjudgment, congestion, and safety accidents that occur during the manual loading process of steel coils.

Accurate Section Loading Estimation Method Based on Voltage Measurement Error Compensation in Distribution Systems (배전선로에서 전압측정치의 오차보정을 통한 정확한 구간부하 추정 방법)

  • Park, Jaehyeong;Jeon, CheolWoo;Lim, Seongil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.43-48
    • /
    • 2016
  • Operational applications such as service restoration, voltage control and protection coordination are calculated based on the active and reactive power loading of the sections in the distribution networks. Loadings of the sections are estimated using the voltage and current measured from the automatic switches deployed along the primary feeders. But, due to the characteristics of the potential transformer attached to the switches, accuracy of the voltage magnitude is not acceptable to be used for section loading calculation. This paper proposes a new accurate section loading estimation method through voltage measurement error compensation by calculating voltage drop of the distribution line. In order to establish feasibility of the proposed method, various case studies based on Matlab simulation have been performed.

On the Parcel Loading System of Naive Bayes-LSTM Model Based Predictive Maintenance Platform for Operational Safety and Reliability (Naive Bayes-LSTM 기반 예지정비 플랫폼 적용을 통한 화물 상차 시스템의 운영 안전성 및 신뢰성 확보 연구)

  • Sunwoo Hwang;Jinoh Kim;Junwoo Choi;Youngmin Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.4
    • /
    • pp.141-151
    • /
    • 2023
  • Recently, due to the expansion of the logistics industry, demand for logistics automation equipment is increasing. The modern logistics industry is a high-tech industry that combines various technologies. In general, as various technologies are grafted, the complexity of the system increases, and the occurrence rate of defects and failures also increases. As such, it is time for a predictive maintenance model specialized for logistics automation equipment. In this paper, in order to secure the operational safety and reliability of the parcel loading system, a predictive maintenance platform was implemented based on the Naive Bayes-LSTM(Long Short Term Memory) model. The predictive maintenance platform presented in this paper works by collecting data and receiving data based on a RabbitMQ, loading data in an InMemory method using a Redis, and managing snapshot DB in real time. Also, in this paper, as a verification of the Naive Bayes-LSTM predictive maintenance platform, the function of measuring the time for data collection/storage/processing and determining outliers/normal values was confirmed. The predictive maintenance platform can contribute to securing reliability and safety by identifying potential failures and defects that may occur in the operation of the parcel loading system in the future.

A Development of Unbalanced Box Stacking System with High Stability using the Center of Gravity Measurement (무게중심 측정을 이용한 불평형 상자의 고안정 적재 시스템 개발)

  • Seong-Woo Bae;Dae-Gyu Han;Jae-Ho Ryu;Hyeon-hui Lee;Chae-Hun An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.229-237
    • /
    • 2024
  • The logistics industry is converging with digital technology and growing into various logistics automation systems. However, inspection and loading/unloading, which are mainly performed in logistics work, depend on human resources, and the workforce is shrinking due to the decline in the productive population due to the low birth rate and aging. Although much research is being conducted on the development of automated logistics systems to solve these problems, there is a lack of research and development on load stacking stability, which has the potential to cause significant accidents. In this study, loading boxes with various sizes and positions of the center of gravity were set up, and a method for stacking that with high stability is presented. The size of the loading box is measured using a depth camera. The loading box's weight and center of gravity are measured and estimated by a developed device with four loadcells. The measurement error is measured through various repeated experiments and is corrected using the least squares method. The robot arm performs load stacking by determining the target position so that the centers of gravity of the loading boxes with unbalanced masses with a random sequence are transported in alignment. All processes were automated, and the results were verified by experimentally confirming load stacking stability.

Loading Work of Dangerous Machine with Image Processing and Robot (로보트와 화상처리를 이용한 위험기계의 loading 작업)

  • 이지용;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.31-39
    • /
    • 1994
  • In this study, image processing were performed to recognize the shape of objects and find its center coordinate and direction to grisp the objects by the robot automatically. The proposed methods could be applied to objects even if light is reflected, and to identify the insides and outsides of objects by using the photo sensor and the difference of surface conditions. Also image segmentation is performed to the objects close to each other. These image processing methods will be increased the safety of operators by the automation of dangerous and hazardous machine works.

  • PDF

Research on the Design and Economic Analysis for the Operation of Cargo Batch Loading and Unloading Systems (일괄 하역장비 운영을 위한 하역작업장 설계 및 경제성 분석에 관한 연구)

  • Kang, Moo-Hong;Lee, Suk;Chu, Yaung-Gil;Choi, Sang-Hei;Won, Seung-Hwan;Cho, Sung-Woo;Kim, Woo-Sun
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The dynamic nature of mechanization and automation to improve productivity and safety within logistics centers, has necessitated various studies to support efficient and safe working conditions for workers. However, accidents in the loading dock occur frequently as workers and forklift trucks operate within the same space. This research introduces cargo batch loading and unloading systems, which enable increasing productivity and safety through the use of mechanization and automation in the loading dock. To assist efficient operation of this new system, four pieces of general-purpose equipment or three pieces of dedicated equipment are deemed to be essential. Moreover, the floor area of the loading dock is designed to accommodate $256.28m^2$ and $207.00m^2$ for the general-purpose and dedicated systems respectively, in addition to the space allocated for equipment and additional space. The design of the loading dock considers the area of the loading dock as well as the cargo batch loading and unloading systems. Economic analysis, such as NPV, IRR, and PBT, were conducted in addition to sensitivity analysis on key variables.

Automated design of optimum longitudinal reinforcement for flexural and axial loading

  • Tomas, Antonio;Alarcon, Antonio
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.149-171
    • /
    • 2012
  • The problem of a concrete cross section under flexural and axial loading is indeterminate due to the existence of more unknowns than equations. Among the infinite solutions, it is possible to find the optimum, which is that of minimum reinforcement that satisfies certain design constraints (section ductility, minimum reinforcement area, etc.). This article proposes the automation of the optimum reinforcement calculation under any combination of flexural and axial loading. The procedure has been implemented in a program code that is attached in the Appendix. Conventional-strength or high-strength concrete may be chosen, minimum reinforcement area may be considered (it being possible to choose between the standards ACI 318 or Eurocode 2), and the neutral axis depth may be constrained in order to guarantee a certain sectional ductility. Some numerical examples are presented, drawing comparisons between the results obtained by ACI 318, EC 2 and the conventional method.

Development of a dry mock-up system for verifying pyroprocess automation

  • Seungnam Yu;Dongseok Ryu;Byugsuk Park;Jonghui Han
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1913-1924
    • /
    • 2024
  • This paper presents the design and operation of an autonomous robot for pyroprocess automation, which requires unique approaches beyond those used in industrial applications to achieve the desired performance. Maintaining an extremely dry atmosphere is crucial to handle various materials, including chloride, and an autonomous system ensures this dry environment. The drying room dehumidifier was carefully selected and designed to generate dry air, and different types of dry air conditioning performance were evaluated, including assessing worker accessibility inside the mock-up to determine the system's feasibility. Containers used for process materials were modified to fit the gripper system of the gantry robot for automation. The loading and unloading of process materials in each equipment were automatically performed to connect the process equipment with the robotic system. The gantry robot primarily operated through macro motion to approach waypoints containing process materials, eliminating the need for precise approach motion. The robot's tapered jaw design allowed it to grasp the target object even with imperfect positioning. Robot motions were programmed using a robot simulator for initial positioning and motion planning, and real accuracy was tested in a mock-up facility using the OPC platform.

Personal computer-based fatigue testing automation and improvements in fatigue behavior monitoring (퍼스널 컴퓨터에 의한 疲勞試驗自動化 및 疲勞擧動 測定의 精密化)

  • 박준래;송지호;엄윤용;김정엽;강기주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.123-130
    • /
    • 1988
  • Two kinds of 16bit-personal computer-based fatigue testing automation and monitoring system were constructed; one is Single-System utilizing a personal computer, the other si Dual-System consisting of two personal computers. The system developed in this study permits to perform multi-step programmed loading and pseudo-random loading fatigue tests, three parameters such as load, total displacement and subtracted displacement can be measured simultaneously. For improvements in measurements of fatigue behavior, two kinds of signal noise reduction software was developed. In addition, a software was also designed to automatically measure the crack opening point and crack length using the unloading elastic compliance technique.

Planning of Compliant Motions for Fixture Loading

  • Yu, Kyeonah
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.62-68
    • /
    • 2000
  • Fixtures are used in almost all phases of machining and assembly to position and hold a part accurately. The class of fixture which consists of 3 locators and 1 clamp(3L/1C) is known as the minimal set that can provide form closure which is a kinematic constraint condition for preventing all planar motions. This type of fixtures has advantages in terms of the number of fixture elements required, the time for clamping, and so on. However it is not widely used in industry because reliable loading scheme has not been reported. In this paper, we propose a method to load the class of 3L/1C fixtures using compliant motions. The planner is developed for synthesizing compliant motions to achieve precise final fixture configuration in the presence of sensing and control uncertainties. A novel approach to eliminate uncertainty in part orientation by adding one extra fixture element called an aligning pin is proposed.

  • PDF