• Title/Summary/Keyword: Load-sensing

Search Result 284, Processing Time 0.023 seconds

Ramp Load/Unload Velocity Control of VCM Using BEMF in HDD (램프 로드/언로드 HDD의 역기전력을 이용한 VCM 속도 제어)

  • 정준;강태식;김태수;정광조;이철우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.730-735
    • /
    • 2004
  • Nowadays, most small form-factor drives adapt a load/unload mechanism and the flying height of the head becomes more and more low. So, the load/unload velocity also becomes one of the important factors to ensure the reliability of the load/unload operation. To control the load/unload velocity accurately, velocity sensing is most important because there is no special velocity sensor during the load/unload operation. In this paper, we proposed a very practical method that measures the velocity from the BEMF voltage of a VCM. Then, the proposed method is applied to the load/unload velocity control using 2.5' drives in order to verify its usefulness.

  • PDF

LDO Regulator with Improved Load Regulation Characteristics and Feedback Detection Structure (피드백 감지 회로 구조로 인한 향상된 Load Regulation 특성을 가진 LDO 레귤레이터)

  • Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1162-1166
    • /
    • 2020
  • In this paper Low Drop-Out (LDO) regulator that improved load regulation characteristics due to the feedback detection structure. The proposed feedback sensing circuit is added between the output of the LDO's internal error amplifier and the input of the pass transistor to improve the regulation of the delta value coming into the output. It has a voltage value with improved load regulation characteristics than existing LDO regulator. The proposed LDO structure was analyzed in Samsung 0.13um process using Cadence's Virtuoso, Spectre simulator.

Wireless Gap Sensor Based on Surface Acoustic Wave Device (표면 탄성파 장치에 기반한 무선 간극 센서)

  • Kim, Jae-Geun;Park, Kyoung-Soo;Park, No-Cheol;Park, Young-Pil;Lee, Taek-Joo;Lim, Soo-Cheol;Ohm, Won-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, we report a high-precision wireless gap sensor based on a surface acoustic wave (SAW) device. The sensing element is a parallel-plate capacitor whose dimensions are $3{\times}3\;mm^2$, and is attached to the SAW device as an external load. The SAW device, equipped with an RF antenna, serves simultaneously as a signal conditioner and an RF transponder. The center frequency of the SAW device is 450 MHz. The wireless gap sensor prototype exhibits a resolution of 100 nm and a sensing range of $50{\mu}m$. The proposed sensor system can be used for remote, high-precision gap measurement in hard-to-reach environments.

A Performance Test Equipment for Rechargeable Electric Tools

  • Lee, Jong-Kwang;Lim, Hyo-Jae;Park, Min-Kyu;Koh, Jin-Ha;Lee, Kyu-Won;Kang, E-Sock
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.68.5-68
    • /
    • 2002
  • For the performance test of rechargeable electric tools, it is necessary to test under the same condition as the actual operation condition. They are necessary to control the load torque and to acquire the test data with a computer, and it should be convenient to fix the tool on the test equipment for rechargeable electric tools. It consists of torque loading parts, sensing parts and control software. Two hysteresis brakes, connected serially with flexible coupling, were applied to control the load for the test. The sensing part consists of a torque sensor, a rpm detector and a power analyzer. The torque and the rpm were measured in order to calculate the output of the rechargeable electric...

  • PDF

A Single-Phase Active Power Filter Control with Load Current Estimation Method (부하전류 추정기법에 의한 단상능동전력필터 제어)

  • 곽상신;이무영;최연호;임성운;권우현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.335-342
    • /
    • 2000
  • A new control method for a single-phase active power filter, based on a load current estimation using a DC capacitor voltage of active power filter without sensing nonlinear load current, is proposed in this paper. Because the method proposed can remove the load current sensor in comparison with a conventional method sensing the load current and DC capacitor voltage together, it can make the active power filter easy installation, low cost, small size with no performance detriment. In addition, sample-hold technique and proportional control method is adopted to control the DC capacitor voltage and as no delay element such as LPF or PI control in the conventional method is used, the transient response is fast and good. Operation of a single-phase active power filter which consist of eight mode is explained according to utility voltage, compensation current and switch state, and compensation characteristics of active power filter using proposed method is verified by experiment.

  • PDF

Finite Element Analysis of Nonlinear Behavior of a Column Type Sensing Element for Load Cell According to Design Parameters (기둥형 로드셀 감지부의 설계변수에 따른 비선형 거동해석)

  • Lee, Chun-Yeol;Gang, Dae-Im
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1540-1546
    • /
    • 2000
  • Recently, force measurement systems are commonly used in many industrial fields and the precision of the measurement system is getting more important as the industry needs more precise tools and in struments to make high quality products. However, a high precision force measurement system is hard to make unless we know precisely the causes, quality and quantity of measurement errors in advance. In this work, many possible mechanical causes of measurement errors are reviewed including ratio of length to diameter of sensing part, radius of contact area, radius of bearing part, ratio of material properties and change of boundary conditions. Also, the measurement errors are analyzed by nonlinear finite element method and the nonlinear behavior of the errors are investigated. The results can be used to design force measurement systems and expected to be very useful especially for compact type load cells.

Development of Small Loading and Positioning Device using VCM (보이스 코일 모터를 이용한 미세 하중 및 위치 결정 기구의 개발)

  • 권기환;오승환;조남규;윤준용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.64-72
    • /
    • 2003
  • This paper presents a small loading and positioning device using VCM (voice coil motor). The developed device consists of a VCM-based linear actuating system, a capacitance displacement sensor and a cantilever deflection sensing system. The trust force of the VCM proportional to applied current moves the column supported on two pairs of parallel leaf springs. The infinitesimal displacement of moved column is detected by capacitance displacement sensor with a resolution of 0.1nm and a repeatability of 1nm. Also, a micro cantilever with known stiffness (200N/m), which is mounted on the end of the column, is used as a force sensor to detect the load applied to a specimen. After the cantilever contacts with the specimen, the deflection of cantilever and the load applied to the specimen are measured by using an optical lever system which consists of a diode laser, a mirror and a PSD (position sensitive detector). In this paper, an experimental system was constructed and its actuator and sensing parts were tested and calibrated. Also, the constructed system was applied to the indentation experiment and the load-displacement curve of aluminum was obtained. Experimental results showed that the developed device can be applied for performing nano indentation.

TEMPORAL CLASSIFICATION METHOD FOR FORECASTING LOAD PATTERNS FROM AMR DATA

  • Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.594-597
    • /
    • 2007
  • We present in this paper a novel mid and long term power load prediction method using temporal pattern mining from AMR (Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

  • PDF

Shape sensing with inverse finite element method for slender structures

  • Savino, Pierclaudio;Gherlone, Marco;Tondolo, Francesco
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.217-227
    • /
    • 2019
  • The methodology known as "shape sensing" allows the reconstruction of the displacement field of a structure starting from strain measurements, with considerable implications for structural monitoring, as well as for the control and implementation of smart structures. An approach to shape sensing is based on the inverse Finite Element Method (iFEM) that uses a variational principle enforcing a least-squares compatibility between measured and analytical strain measures. The structural response is reconstructed without the knowledge of the mechanical properties and load conditions but based only on the relationship between displacements and strains. In order to efficiently apply iFEM to the most common structural typologies of civil engineering, its formulation according to the kinematical assumptions of the Bernoulli-Euler theory is presented. Two beam inverse finite elements are formulated for different loading conditions. Depending on the type of element, the relationship between the minimum number of required measurement stations and the interpolation order is defined. Several examples representing common applications of civil engineering and involving beams and frames are presented. To simulate the experimental strain data at the station points and to verify the accuracy of the displacements obtained with the iFEM shape sensing procedure, a direct FEM analysis of the considered structures is performed using the LUSAS software.

Channel State Information Feedback Scheme Based on Non-Convex Compressed Sensing for Massive MIMO Systems (거대 다중 안테나 시스템을 위한 넌컨벡스 압축센싱 기반채널 정보 피드백 기법)

  • Kim, Jung-Hyun;Kim, Inseon;Park, Jin Soo;Song, Hong-Yeop;Han, Sung Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.628-636
    • /
    • 2015
  • In this paper, we propose a non-convex compressed sensing(NCCS)-based channel state information(CSI) feedback scheme for massive multiple-input multiple-output(MIMO) systems. Combining the random vector quantization(RVQ), the proposed scheme permits a transmitter to obtain CSI with acceptable accuracy under substantially reduced feedback load. Furthermore, it recovers CSI from fewer measurements than that of existing convex compressed sensing(CCS)-based schemes even if the measurements are inaccurate and incomplete. Simulation results show that the proposed scheme achieves higher throughput than both existing CCS-based feedback scheme and random vector quantization(RVQ) feedback scheme with the same feedback load.