• Title/Summary/Keyword: Load-aware

Search Result 91, Processing Time 0.023 seconds

Session Management and Control Architecture for N-Screen Services (N-스크린 서비스를 위한 세션 제어 및 관리 구조)

  • Kim, Jae-Woo;Ullah, Farman;Sarwar, Ghulam;Lee, Hyun-Woo;Lee, Sung-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.15-23
    • /
    • 2013
  • In this paper, we propose a session management and control architecture for N-Screen services, which enable users to change devices and transfer contents among user's devices during service by session transfer and split. In N-Screen services, users may have multiple devices with different attribute such as screen resolution, CPU capability and access network interfaces. Also, since users may change devices during service, or one user may use multiple stream, N-Screen services need to enable the user to share and transfer contents across N-Screen devices. We introduce the management and control servers to provide session split over user multiple devices and session continuity while changing device. Furthermore, the proposed architecture provides the device capabilities aware session continuity. In addition, the proposed scheme minimizes the session transfer delay and content server processing load. We present results that show the effectiveness and usefulness of proposed architecture.

Energy-aware Routing Protocol using Multi-route Information in Wireless Ad-hoc Networks with Low Mobility (저이동성을 갖는 무선 애드혹 망에서 다중 경로 정보를 이용한 에너지 인지 라우팅 프로토콜)

  • Hong, Youn-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.55-65
    • /
    • 2010
  • We present a method for increasing network lifetime without link failure due to lack of battery capacity of nodes in wireless ad-hoc networks with low mobility. In general, a node with larger remaining battery capacity represents the one with lesser traffic load. Thus, a modified AODV routing protocol is proposed to determine a possible route by considering a remaining battery capacity of a node. Besides, the total energy consumption of all nodes increase rapidly due to the huge amount of control packets which should be flooded into the network. To reduce such control packets efficiently, a source node can store information about alternative routes to the destination node into its routing table. When a link failure happens, the source node should retrieve the route first with the largest amount of the total remaining battery capacity from its table entries before initiating the route rediscovery process. To do so, the possibility of generating unnecessary AODV control packets should be reduced. The method proposed in this paper increases the network lifetime by 40% at most compared with the legacy AODV and MMBCR.

Reducing Transmit Power and Extending Network Lifetime via User Cooperation in the Next Generation Wireless Multihop Networks

  • Catovic, Amer;Tekinay, Sirin;Otsu, Toru
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.351-362
    • /
    • 2002
  • In this paper, we introduce a new approach to the minimum energy routing (MER) for next generation (NG) multihop wireless networks. We remove the widely used assumption of deterministic, distance-based channel model is removed, and analyze the potentials of MER within the context of the realistic channel model, accounting for shadowing and fading. Rather than adopting the conventional unrealistic assumption of perfect power control in a distributed multihop environment, we propose to exploit inherent spatial diversity of mobile terminals (MT) in NG multihop networks and to combat fading using transmit diversity. We propose the cooperation among MTs, whereby couples of MTs cooperate with each other in order to transmit the signal using two MTs as two transmit antennas. We provide the analytical framework for the performance analysis of this scheme in terms of the feasibility and achievable transmit power reduction. Our simulation result indicate that significant gains can be achieved in terms of the reduction of total transmit power and extension of network lifetime. These gains are in the range of 20-100% for the total transmit power, and 25-90% for the network lifetime, depending on the desired error probability. We show that our analytical results provide excellent match with our simulation results. The messaging load generated by our scheme is moderate, and can be further optimized. Our approach opens the way to a new family of channel-aware routing schemes for multihopNG wireless networks in fading channels. It is particularly suitable for delivering multicast/ geocast services in these networks.

Low-Latency Beacon Scheduling Algorithms for Vehicular Safety Communications (차량간 안전 통신에서 짧은 지연시간을 보장하는 비콘 스케줄링 알고리즘)

  • Baek, Song-Nam;Jung, Jae-Il;Oh, Hyun-Seo;Lee, Joo-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • The safety applications based on the IEEE 802.11p, periodically transmit the safety-related information to all surrounding vehicles with high reliability and a strict timeline. However, due to the high vehicle mobility, dynamic network topology and limited network resource, the fixed beacon scheduling scheme excess delay and packet loss due to the channel contention and network congestion. With this motivation, we propose a novel beacon scheduling algorithm referred to as spatial-aware(SA) beacon scheduling based on the spatial context information, dynamically rescheduling the beaconing rate like a TDMA channel access scheme. The proposed SA beacon scheduling algorithm was evaluated using different highway traffic scenarios with both a realistic channel model and 802.11p model in our simulation. The simulation results showed that the performance of our proposed algorithm was better than the fixed scheduling in terms of throughput, channel access delay, and channel load. Also, our proposed algorithm is satisfy the requirements of vehicular safety application.

MAC Aware Multi-Channel Routing Protocol for Multi-Interface Ad-Hoc Wireless Networks (다중-인터페이스 애드-혹 무선 네트워크를 위한 MAC 인식 다중-채널 라우팅 프로토콜)

  • Lim, Hunju;Joung, Sookyoung;Lee, Sungwha;Park, Inkap
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.249-258
    • /
    • 2013
  • In multi-hop ad hoc networks, multi-interface multi-channel architecture is being noticing as methodology to improve the effective bandwidth and end-to-end throughput, But since existing routing metrics designed for networks based on single-interface exactly can not reflects the nature of networks based on multi-interface multi-channel, we are not expected the effect of throughput improvement. there had been proposal of MCR that discover high throughput by using metrics such as channel diversity and interface switching cost. however, MCR have an problem that is degraded it's performance in congested networks, because it not reflects the impact of traffic load. in this paper, we propose MAMCR metric, which select high throughput paths under congested conditions by combination MCR with channel access time metric, and conform it's the effect of performance improvement by ns-2 simulation.

A Study on the Performance and Dehumidification Load of an HVAC System for Conservation of Ancient Tombs (고분 공조시스템의 운전특성 및 제습부하에 관한 연구)

  • Park, Jin-Yang;Ko, Seok-Bo;Jun, Hee-Ho;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.253-262
    • /
    • 2007
  • Although the importance of good conservation of historical sites including ancient royal tombs is well aware, still not much attention has been paid for facilities to realize it. There are numerous ancient royal tombs spread in Korean peninsula which are opened and some of them are selectively on display for public access. However, the conservation measures of these sites have not been seriously investigated. Even the level of understanding of the underground environment of tombs is not satisfactory. In the present study, we focus on the dehumidification loads to maintain appropriate conservation conditions in terms of temperature and humidity. Two experimental tombs different in size were built in KNU (Kongju National University) campus with the dimensions ($L{\times}W{\times}H$) of $1.0m{\times}2.8m{\times}1.0m\;and\;1.3m{\times}3.0m{\time}1.2m$, respectively, HVAC systems are installed to maintain a suitable condition for conservation, i.e., $22{\pm}2^{\circ}C$ in temperature and $55{\pm}5%$ in relative humidity. The condensed water are measured to estimate the dehumidification loads while the temperature and the humidity inside the tombs were maintained within the specified range.

Design and implementation of OSGi-based Context-Aware Mobile Healthcare System (OSGi 기반 상황인지 모바일 헬스케어 시스템 설계 및 구현)

  • Song, Seung-Jae;Kim, Nam-Ho;Ryu, Sing-Hwan;Shin, Ho-Jin;Jang, Kyung-Soo;Shin, Dong-Ryoel
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.2 s.314
    • /
    • pp.47-59
    • /
    • 2007
  • Recently, Healthcare system has not been standardized and has been developed as an embedded system lacking interoperability. We are finally going to face such problems as having excessive load in using network caused by the uncontrolled spread of system and un-guaranteed interoperability among the heterogeneous systems. We suggest the possibility that OSGi and JADE can be accepted as a solution for the above problems.

Hierarchical Power Management Architecture and Optimal Local Control Policy for Energy Efficient Networks

  • Wei, Yifei;Wang, Xiaojun;Fialho, Leonardo;Bruschi, Roberto;Ormond, Olga;Collier, Martin
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.540-550
    • /
    • 2016
  • Since energy efficiency has become a significant concern for network infrastructure, next-generation network devices are expected to have embedded advanced power management capabilities. However, how to effectively exploit the green capabilities is still a big challenge, especially given the high heterogeneity of devices and their internal architectures. In this paper, we introduce a hierarchical power management architecture (HPMA) which represents physical components whose power can be monitored and controlled at various levels of a device as entities. We use energy aware state (EAS) as the power management setting mode of each device entity. The power policy controller is capable of getting information on how many EASes of the entity are manageable inside a device, and setting a certain EAS configuration for the entity. We propose the optimal local control policy which aims to minimize the router power consumption while meeting the performance constraints. A first-order Markov chain is used to model the statistical features of the network traffic load. The dynamic EAS configuration problem is formulated as a Markov decision process and solved using a dynamic programming algorithm. In addition, we demonstrate a reference implementation of the HPMA and EAS concept in a NetFPGA frequency scaled router which has the ability of toggling among five operating frequency options and/or turning off unused Ethernet ports.

A Study on Context Aware Vertical Handover Scheme for Supporting Optimized Flow Multi-Wireless Channel Service based Heterogeneous Networks (이기종 망간의 최적화된 플로우 기반 다중 무선 채널 지원을 위한 상황인지 수직핸드오버 네트워크 연구)

  • Shin, Seungyong;Park, Byungjoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, multimedia streaming service has been activated, and the demand for high-quality multimedia convergence contents services is predicted to increase significantly in the future. The issues of the increasing network load due to the rise of multimedia streaming traffic must be addressed in order to provide QoS guaranteed services. To do this, an efficient network resource management and mobility support technologies are needed through seamless mobility support for heterogeneous networks. Therefore, in this paper, an MIH technology was used to recognize the network situation information in advance and reduce packet loss due to handover delays, and an ACLMIH-FHPMIPv6 is designed that can provide an intelligent interface through introducing a hierarchical mobility management technique in FPMIPv6 integrated network.

Implementation of Multicore-Aware Load Balancing on Clusters through Data Distribution in Chapel (클러스터 상에서 다중 코어 인지 부하 균등화를 위한 Chapel 데이터 분산 구현)

  • Gu, Bon-Gen;Carpenter, Patrick;Yu, Weikuan
    • The KIPS Transactions:PartA
    • /
    • v.19A no.3
    • /
    • pp.129-138
    • /
    • 2012
  • In distributed memory architectures like clusters, each node stores a portion of data. How data is distributed across nodes influences the performance of such systems. The data distribution scheme is the strategy to distribute data across nodes and realize parallel data processing. Due to various reasons such as maintenance, scale up, upgrade, etc., the performance of nodes in a cluster can often become non-identical. In such clusters, data distribution without considering performance cannot efficiently distribute data on nodes. In this paper, we propose a new data distribution scheme based on the number of cores in nodes. We use the number of cores as the performance factor. In our data distribution scheme, each node is allocated an amount of data proportional to the number of cores in it. We implement our data distribution scheme using the Chapel language. To show our data distribution is effective in reducing the execution time of parallel applications, we implement Mandelbrot Set and ${\pi}$-Calculation programs with our data distribution scheme, and compare the execution times on a cluster. Based on experimental results on clusters of 8-core and 16-core nodes, we demonstrate that data distribution based on the number of cores can contribute to a reduction in the execution times of parallel programs on clusters.