• 제목/요약/키워드: Load-Life Curve

검색결과 132건 처리시간 0.027초

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding;Xiao-Wei Ye;Hong Zhang;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.363-374
    • /
    • 2024
  • The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.

가속수명시험을 위한 KTX 구조물의 S-N 선도 추정 (S-N Curve Estimation of a KTX Structure for an Accelerated Life Testing)

  • 정달우;최낙삼;박수한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.384-389
    • /
    • 2008
  • An accelerated fatigue test is essentially required to maintain the reliability of the actual structure of KTX under operation conditions. However, actual fatigue life cannot be obtained if specimens are not adequate to the conventional fatigue test. Moreover component maker did not provide data of loading stress (S) - cycles at the failure (N). In this study, we suggest a prediction method of the S-N curve for establishing an accelerating test under various load levels. Load history was acquired from the field tests. A Rainflow method was used on the cycle counting of the field load data, and then, an S-N curve was obtained through the iteration process under the condition that the damage index satisfies to 1 in the Miner's rule.

  • PDF

가속수명시험을 위한 KTX고속열차 구조물의 S-N 선도 추정 (S-N Curve Deduction of a KTX High-Speed Train Structure for an Accelerated Life Testing)

  • 정달우;최낙삼;박수한
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.388-395
    • /
    • 2009
  • An accelerated fatigue test is essentially required to maintain the reliability of the actual structures of KTX under operation conditions. However, actual fatigue life cannot be obtained because the conventional fatigue tests are not adequate to the real load conditions. Moreover foreign component makers have not provided data of the loading stresses (S) versus cycles at the failure (N). In this study, we suggested a deduction method of the S-N curve for establishing an accelerating test under various load levels. Load history was acquired from the field tests. A Rainflow method was used on the cycle counting of the field load data. After that, an S-N curve was obtained through the iteration process under the condition that the damage index satisfies to 1 in the Miner's rule. The deduced S-N curve was applied to the performance evaluation of Korean-made sealed knuckles compared with imports.

강박스 거더의 생애주기비용 최적설계 (Optimal Life-Cycle Cost Design of Steel Box Girders)

  • 신영석;박장호;이현섭;안예준
    • 한국전산구조공학회논문집
    • /
    • 제18권4호통권70호
    • /
    • pp.445-452
    • /
    • 2005
  • 본 논문에서는 강박스 거더의 생애주기비용을 최소화하기 위한 방법을 제시하였다. 본 논문에서 고려된 강박스 거더의 생애주기비용은 초기비용, 유지관리비용 및 보수비용으로 구성되었다. 강재 주형의 상태등급곡선과 안전진단 결과 측정된 내하력을 바탕으로 내하력곡선을 추정하였으며, 이 곡선을 이용하여 생애주비용을 고려한 강박스 거더의 최적설계를 수행하였다. 또한 내하력곡선을 통해 강박스 거더의 공용수명과 보수 보강 시기 및 횟수를 결정하고 초기 내하력에 따른 생애주기 동안 발생하는 연간비용을 비교, 분석하였다. 본 논문에서 제안한 생애주기비용을 고려한 강박스 거더의 최적설계를 통하여 기존의 설계에 비해 보다 경제적이며 안전한 설계를 유도할 수 있으리라 판단된다.

진동 특성을 고려한 자동차 냉각모듈 방진고무의 내구성 평가 (Evaluation for Fatigue Life of Rubber Isolator for Vibration Characteristic on Automotive Cooling Module)

  • 심희진;김한철;김정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.350-355
    • /
    • 2008
  • A Rubber mount is widely used for mechanical parts or engineering materials. Especially, it plays an important role in reducing mechanical vibration due to cyclic loading. But, rubber mount is damaged due to the cyclic loading and resonance. Therefore, it is necessary to investigate evaluation of fatigue life considering vibration characteristics for rubber. In this study, a vibration fatigue analysis was performed and based on Power Spectral Density(PSD) and the stress-life curve and a result of frequency response analysis in the finite element method. The measured load history in experiment was transformed to PSD curve. The stress-life curve was obtained by nonlinear static analysis and fatigue test. In addition, frequency response analysis was conducted for mechanical part. In order to evaluate fatigue life of rubber mount, vibration fatigue test was conducted at the constant acceleration-level as well. Fatigue life was determined when the load capacity is reduced to 60% of its initial value. As a result, predicted fatigue life of rubber mount agreed fairly well with the experimental fatigue life.

  • PDF

안내궤도 차량 부품의 피로 수명 예측에 관한 연구 (A STUDY ON THE FATIGUE LIFE PREDICTION OF GUIDEWAY VEHICLE COMPONENTS)

  • 이수호;박태원;윤지원;전용호;정성필;박중경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.997-1002
    • /
    • 2007
  • A guideway vehicle is used in automobile, semiconductor and LCD manufacturing industries to transport products efficiently. Since the operating speed of the guideway vehicle should be increased for maximum productivity, the weight of the vehicle has to be reduced. This may cause parts in the system to fail before the life of the system. Therefore estimation of the fatigue life of the parts becomes an important problem. In this study, the fatigue life of the driving wheel in the guideway vehicle is estimated using a S-N curve. To obtain the fatigue life of a part, the S-N curve, load time history applied on a driving wheel and material property are required. The S-N curve of the driving wheel is obtained using the fatigue experiment on wheels. Load time history of the wheel is obtained from multibody dynamics analysis. To obtain the material properties of the driving wheel, which is composed of aluminum with urethane coating, a compression hardware testing has been done with the static analysis of the FE model. The fatigue life prediction using computational analysis model guarantees the safety of the vehicle at the design stage of the product.

  • PDF

노치부의 피로균열발생 수명 비교 (The comparison of the fatigue crack initiation life in a notch)

  • 김성훈;배성인;함경춘;송정일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.217-222
    • /
    • 2001
  • For the life evaluating of notched members, it is the best way that performing the real fatigue test of structure containing notch. But this method required generally much times and costs to evaluate fatigue life. So, generally we use the modified S-N curve or several methods to predict fatigue life. In this study, crack initiation life was evaluated by fatigue testing the SAE keyhole specimen and smooth specimen made of Al 7075-T6 alloys using the constant load then obtained S-N curve of smooth specimen and P-N curve of SAE keyhole specimen. And, fatigue lives of keyhole specimen are predicted using some life prediction methods (Nominal range I method, Nominal range II method, FEM analysis) for investigating experimented results, and that were compared with experimental data. Predicted fatigue lives by FEM analysis were corresponded with experimental data between 1/3times and 3times on the whole, and predicted fatigue lives using modified S-N curve (Nominal range I method, Nominal range II method) were nonconservative compared with that of FEM analysis.

  • PDF

3MW 해상풍력발전기 주물품의 내구수명 평가 (Assessment of casting parts fatigue life for 3MW offshore wind turbine)

  • 노기태;강원형;이승찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.189.2-189.2
    • /
    • 2010
  • The purpose of this study is fatigue damage assessment for large sized casting parts (hub and mainframe) of the 3MW offshore wind turbine by computer simulation. Hub and mainframe durability assessment is necessary because wind turbine have to guarantee for 20 years. Fatigue life evaluation must be considered all of fatigue load conditions as the components are wind load transmission path. Palmgren-Miner linear damage accumulation hypothesis is applied for fatigue life estimation with stress-life approach. S-N curve for the spheroid graphite cast iron EN-GJS-400-18-LT is derived according to durability guidelines. Reduction factors were applied for survival probability, surface roughness, material quality and partial safety factor according to Germanischer Lloyd rules. To calculate fatigue damage, stress tensors, extracted from the unity load calculation from ANSYS is multiplied with time track of fatigue loads extracted from GH bladed. Damage accumulation is performed with all of fatigue load conditions at each finite element nodes. In this study maximum nodal damage value is under 1.0. casted parts are safe. This research was financially supported by the Ministry of Knowledge Economy(MKE), Korea Institute for Advancement of Technology(KIAT) and Honam Leading Industry Office through the Leading Industry Development for Economic Region.

  • PDF

반복적인 충격하중을 받은 PC 플라스틱 재료의 변형 및 수명 평가 (Deformation and Life Evaluation of PC Plastic Materials Subjected to Repeated Impact Loads)

  • 이진경
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.611-616
    • /
    • 2020
  • Polycarbonate (PC) materials having electrical insulation properties, are thermoplastic material and are easily processed, have excellent strength and heat resistance characteristics, and also have transparent and hard characteristics. In this study, we tried to derive the ε-N curve of strain-life, which shows the relationship between the strain characteristics and the life of the material when repeated impact loads are applied to the PC plastic material. As the impact load increased to 3.0kg, 4.0kg, 5.0kg, and 6.0kg, the strain also increased linearly to 0.033, 0.041, 0.046, and 0.055. At 3.0kg of mass impact, the test piece broke with 12000 impact cycles, 8400 times at 3.5kg, 7400 times at 4.0kg, 6600 times at 4.5kg, 4700 times at 5.0kg, 3000 times at 5.5kg, and 1000 times at 6.0kg. The number of fractures exponentially decreased as the load gradually increased. Using these results, an ε-N curve for PC plastic was derived.

강섬유보강 경량 폴리머 콘크리트의 역학적 거동 (Mechanical Behavior of Steel Fiber Reinforced Lightweight Polymer Concretese)

  • 윤준노;성찬용
    • 한국농공학회논문집
    • /
    • 제47권2호
    • /
    • pp.63-72
    • /
    • 2005
  • In this study, the physical and mechanical properties of steel fiber reinforced lightweight polymer concrete were investigated experimentally with various steel fiber contents. All tests were performed at room temperature, and stress-strain curve and load-deflection curve were plotted up to failure. The unit weight of steel fiber reinforced lightweight polymer concrete was in the range of $1,020{\sim}1,160\;kg/m^3$, which was approximately $50\%$ of that of the ordinary polymer concrete, The compressive strength, splitting tensile strength, flexural toughness and flexural load-deflection curves after maximum load were shown with increase of steel fiber content. The stress-strain curves of steel fiber reinforced lightweight polymer concrete were bilinear in nature with a small transition zone, Based on these results, steel fiber reinforced lightweight polymer concrete can be widely applied to the polymer composite products.