• Title/Summary/Keyword: Load transfer curve

Search Result 81, Processing Time 0.056 seconds

Fire Behavior of Reinforced Concrete Filled Square Steel Tube Columns Under Constant Axial Loads

  • Jeeyoung Lee;Seulgi Han;Jinwon Shin;Inrak Choi;Sungmo Choi
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.1
    • /
    • pp.85-95
    • /
    • 2024
  • A composite member made of concrete-filled steel tubes (CFT columns) has been recognized for its fire resistance due to the thermal mass effect of concrete inside the steel tube, as shown in various studies. In this study, the fire resistance performance of reinforced CFT columns under constant axial load was evaluated using finite element analysis with ABAQUS. For this purpose, the variables including cross-section size, steel tube thickness, and concrete cover thickness were set, and the temperature distribution in the column cross-section exposed to a standard fire was investigated using heat transfer analysis. Ultimately, a P-M interaction curve was obtained by evaluating the overall residual strength of columns, and the fire resistance time was determined by evaluating axial displacement-time responses due to the reduction in load capacity during fire through stress analysis.

Nonlinear analysis of connectors applied on concrete composite constructions

  • Winkler, B.;Bianchi, P.;Siemers, M.
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.91-102
    • /
    • 2006
  • To place concrete overlays has become a standard application in the strengthening and rehabilitation of concrete structures such as bridges, tunnels, parking decks and industrial buildings. In general, connectors are used to ensure a monolithic behavior of the two concrete layers. Within the framework of the development of a new connector wedge splitting tests and shear tests were performed, in addition nonlinear finite element analyses were applied to investigate the load transfer behavior of the connectors for different prototypes. The numerical simulation results were compared to experimental data. The computed load-displacement curve demonstrates good correspondence with the curves obtained in the experiments, and the experimental crack patterns are reasonably simulated by the computed crack propagation. Both numerical and experimental investigations on the wedge splitting test and on the shear test served as basis for the development of new type of connectors.

A Comparison Study of the Bulbous Bow Shape for LPG Carrier (LPG 선박의 선수 Bulb 형상 비교 Study)

  • Lee Jongki;Park Jaesang;Kim Sungpyo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.31-37
    • /
    • 2005
  • An attempt to improve the speed performance through the minimizing in wave resistance has been done by an application of gooseneck and no bulb type to bulbous bow for the DSME 78,500 Class LPG Carrier on the basis of the CFD calculation and comparatives model tests. The hydrodynamic characteristics according to the variation of the shape of Cp-curve, design load water line, frame line and bulbous bow that have an important effect on the wave resistance has been evaluated/calculated by ship-flow code. A wide variety in hull variation have been tried to have a good hull form with three types of fore-body hull forms mainly classified by the shape of bulbous bow. The speed performances for the three final hull forms with different bulbous bows have been evaluated through the model tests.

  • PDF

Behavioral Mechanism of Hybrid Model of ABG: Field Test (현장시험을 통한 ABG 하이브리드 공법의 거동 메커니즘 분석)

  • Seo, Hyung-Joon;Kim, Hyun-Rae;Jeong, Nam-Soo;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.523-534
    • /
    • 2010
  • A hybrid system of soil-nailing and compression anchor is proposed in this paper; the system is composed of an anchor bar (installed at the tip) with two PC strands and a steel bar. After drilling a hole, installing proposed hybrid systems, and filling the hole with grouting material, prestress is applied to the anchor bar to restrict the deformation at the head and/or to prevent shallow slope failures. However, since the elongation rate of PC strand is much larger than that of steel bar, yield at the steel bar will occur much earlier than the PC strand. It means that the yield load of the hybrid system will be overestimated if we simply add yield loads of the two - anchor bar and PC strands. It might be needed to try to match the yielding time of the two materials by applying the prestress to the anchor bar. It means that the main purpose of applying prestress to the anchor bar should be two-fold: to restrict the deformation at the nail head; and more importantly, to maximize the design load of the hybrid system by utilizing load transfer mechanism that transfers the prestress applied at the tip to the head through anchor bar. In order to study the load transfer mechanism in a systematic way, in-situ pullout tests were performed with the following conditions: soil-nailing only; hybrid system with the variation of prestress stresses from 0kN to 196kN. It was found that the prestress applied to the anchor system will induce the compressive stress to the steel bar; it will result in decrease in the slope of load-displacement curve of the steel bar. Then, the elongation at which the steel bar will reach yield stress might become similar to that of PC strands. By taking advantage of prestress to match elongations at yield, the pullout design load of the hybrid system can be increased up to twice that of the soil-nailing system.

  • PDF

Advanced One-zone Heat Release Analysis for IDI Diesel Engine (IDI 디젤기관의 개선된 단일영역 열발생량 계산)

  • Kim Gyu-Bo;Jeon Choung-Hwan;Chang Young-Jun;Lee Suk-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1101-1110
    • /
    • 2004
  • An one-zone heat release analysis was applied to a 4 cylinder indirect injection diesel engine. The objective of the study is to calculate heat release accurately considering the effect of specific heat ratio. heat transfer and crevice model and to find out combustion characteristics of an indirect diesel engine considering the effect of the pressures in main and swirl chambers. Especially specific heat ratio indicating combustion characteristics is adapted. instead of that indicating matter properties, which has been used in former studies Moreover by adaption of blowby model, cylinder gas mass became accurately calculated. Therefore, with ideal gas equation, calculating cylinder gas temperature, it was found to affect heat transfer loss and heat release. Determining heat transfer constants $C_1$. $C_2$ as 0.6 respectively. the integrated gross heat release values were predicted well for the measured value at various engine speed, full load operating conditions. The curve of heat release rate was similar to SI engine rather than DI engine. That is originated from that swirl chamber reduce an instant combustion which occurs in DI engine due to ignition delay on early stage of combustion.

Expected Life Evaluation of Offshore Wind Turbine Support Structure under Variable Ocean Environment (해양환경의 변동성을 고려한 해상풍력터빈 지지구조물의 기대수명 평가)

  • Lee, Gee-Nam;Kim, Dong-Hyawn;Kim, Young-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.435-446
    • /
    • 2019
  • Because offshore structures are affected by various environmental loads, the risk of damage is high. As a result of ever-changing ocean environmental loads, damage to offshore structures is expected to differ from year to year. However, in previous studies, it was assumed that a relatively short period of load acts repeatedly during the design life of a structure. In this study, the residual life of an offshore wind turbine support structure was evaluated in consideration of the timing uncertainty of the ocean environmental load. Sampling points for the wind velocity, wave height, and wave period were generated using a central composites design, and a transfer function was constructed from the numerical analysis results. A simulation was performed using the joint probability model of ocean environmental loads. The stress time history was calculated by entering the load samples generated by the simulation into the transfer function. The damage to the structure was calculated using the rain-flow counting method, Goodman equation, Miner's rule, and S-N curve. The results confirmed that the wind speed generated at a specific time could not represent the wind speed that could occur during the design life of the structure.

Transfer Force Characteristics of Seedling Bed Transfer Equipment Using Pneumatic Cylinder for Automation of Plant Factory (식물공장 자동화를 위한 공압 실린더를 이용한 육묘베드 이송장치의 이송력 특성)

  • Min, Young-Bong;Park, Sang-Min;Lee, Gong-In;Kim, Dong-Ouk;Kang, Dong-Hyun;Moon, Sung-Dong
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.155-165
    • /
    • 2012
  • This study was performed to offer the data for design of the seedling bed transfer equipment to make the automation of working process in a plant factory. The seedling bed transfer equipment pushing the seedling bed with bearing wheels on the rail for interconnecting each working process by a pneumatic cylinder was made and examined. The examined transfer force to push the seedling bed with a weight of 178.9 N by the pneumatic cylinder with length of 60 cm and section area of 5 $cm^2$ was measured by experiments. The examined transfer forces was compared with theoretical ones calculated by the theoretical formula derived from dynamic system analysis according to the number of the seedling bed and pushing speed of the pneumatic cylinder head at no load. The transfer function of the equipment with the input variable as the pushing speed $V_{h0}$(m/s) and the output variable as the transfer force f(t)(N) was represented as $F(s)=(V_{h0}/k)(s+B/M)/(s(s^2+Bs/M+1/(kM))$ where M(kg), k(m/N) and B(Ns/m) are the mass of the bed, the compression coefficient of the pneumatic cylinder and the dynamic friction coefficient between the seedling bed and the rail, respectively. The examined transfer force curves and the theoretical ones were represented similar wave forms as to use the theoretical formular to design the device for the seedling bed transfer. The condition of no vibration of the transfer force curve was $kB^2>4M$. The condition of transferring the bed by the repeatable impact and vibration force according to difference of transfer distance of the pneumatic cylinder head from that of the bed was as $Ce^{-\frac{3{\pi}D}{2\omega}}<-1$, where ${\omega}=\sqrt{\frac{1}{kM}-\frac{B^2}{4M^2}}$, $C=\{\frac{\frac{B}{2M}-\frac{1}{kB}}{\omega}\}$, $D=\frac{B}{2M}$. The examined mean peak transfer force represented 4 times of the stead state transfer force. Therefore it seemed that the transfer force of the pneumatic cylinder required for design of the push device was 4Bv where v is the pushing speed.

Research on Machineability in NURBS Interpolator Considering Constant Material Removal Rate (소재제거율을 일정하게 한 NURBS 보간기에서 절삭성 고찰)

  • Ko Tae Jo;Kim Hee Sul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.60-66
    • /
    • 2004
  • Increasing demands on precision machining of 3D free-form surface have necessitated the tool to move smoothly with varying feedrate. To this regard, parametric interpolators such as NURBS (Non-Uniform Rational B-Spline) interpolator have been introduced in CNC machining system. Such interpolators reduce the data burden in NC code, increase data transfer rate into NC controller, and finally give smooth motion while machining. In this research, a new concept to control cutting load in NURBS Interpolator was tried based on the curvature of curve. This is to protect cutting tool, and to have good machinability. For proof of the system, cutting force and surface topography were evaluated. From the experimental results. the interpolator is good enough for machining a free-form surface.

Speed Control of Darrieus Wind Turbine for Load-variation (다리우스 풍력터빈의 부하변동에 따른 속도제어)

  • 오철수
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.110-114
    • /
    • 1995
  • This paper is dealing with speed control of Darrieus Wind Turbine, which can be figured out from torque equation. The operating point of Darrieus Wind Turbine can be found from speed-torque curve, which is either stable or instable. The transfer of operating point due to variation of wind speed and generating power is shown in this paper.

  • PDF

The velocity control system design of marine diesel engine with mechanical-hydraulic governor using w transformation method (w 변환에 의한 기계-유압식 조속기를 가진 선박용 디젤기관의 속도제어 시스템 설계)

  • Kang, C.N.;Park, J.G.;Chung, J.Y.;Roh, Y.O.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.696-698
    • /
    • 1997
  • The marine diesel engine have been widely applied with a mechanical hydraulic governor to control the ship speed for long time. But it was recently very difficult for the mechanical hydraulic governor to control the speed of engine under the condition of low speed and low load because of jiggling by rough fluctuation of rotating torque and hunting by dead time of diesel engine. In order to analyze the speed control system the transfer function was converted from z to w transformation. The author proposed velocity control system with feedback loop by PID controller in order to stabilize for unstable area. The influence of dead time was discussed by Nichols chart and unit step response curve. It was confirmed through computer simulation that the performance improvement of a mechanical hydraulic governor can be obtained by PID controller.

  • PDF