• Title/Summary/Keyword: Load transfer characteristics

Search Result 402, Processing Time 0.027 seconds

Free-Stream Turbulence Effect on the Heat (Mass) Transfer Characteristics on a Turbine Rotor Surface (자유유동 난류강도가 터빈 동익 표면에서의 열(물질)전달 특성에 미치는 영향)

  • Lee, Sang-Woo;Park, Jin-Jae;Kwon, Hyun-Goo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1442-1446
    • /
    • 2004
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is employed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiments are carried out for two free-stream turbulence intensities of 1.2% and 14.7%. The high free-stream turbulence results in more uniform distributions of heat load on the both pressure and suction surfaces and in an early boundary-layer separation on the suction surface. The heat (mass) transfer enhancement on the suction surface due to the endwall vortices is found to be relatively small under the high free-stream turbulence.

  • PDF

A Study on the Structural Characteristics and Estimation of Refrigerating. Load for the Fruit Storage (청과물저장고의 구조특성 및 냉각부하량 산정에 관한 연구)

  • 이석건;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.1
    • /
    • pp.4038-4051
    • /
    • 1976
  • This study was intended to provide the basic design creteria for the refrigerated storage, and to estimate the required optimum capacity of refrigerator for the different sizes and kinds of the existing fruit storage. The structural characteristics of the existing fruit storages in Pyungtaek-khun of Kyungki-do were surveyed. The average out-door air temperature during the expected storage life after harvesting, was obtained by analyzing the weather information. The heat transfer rates through the different models of storage walls were estimated. The refrigerating load required for different models of fruit storage was analyzed in the basis of out-door air temperature. The results obtained in this study are summarized as follows: 1. The fruit storages surveyed were constructed on-ground, under-ground and sub-ground type buildings. The majority of them being the on-ground buildings are mostly made of earth bricks with double walls. Rice hull was mostly used as the insulating materials for their walls and ceilings. About 42% of the buildings were with the horizontal ceiling, 22% with sloped ceiling, and about 36% without ceiling. About 60% of the storage buildings had floor without using insulated material. They were made of compacted earth. 2. There is no difference in heat transfer among six different types of double walls. The double wall, however, gives much less heat transfer than the single wall. Therefore, the double wall is recommended as the walls of the fruit storage on the point of heat transfer. Especially, in case of the single wall using concrete, the heat transfer is about five time of the double walls. It is evident that concrete is not proper wall material for the fruit storage without using special insulating material. 3. The heat transfer through the storage walls is in inverse proportion to the thickness of rice hull which is mostly used as the insulating material in the surveyed area. It is recommended that the thickness of rice hull used as the insulating material far storage wall is about 20cm in consideration of the decreasing rate of heat transfer and the available storage area. 4. The design refrigerating load for the on-ground storages having 20 pyung area is estimated in 4.07 to 4.16 ton refrigeration for double walls, and 5.23 to 6.97 ton refrigeration for single walls. During the long storage life, however, the average daily refrigerating load is ranged from 0.93 to 0.95 ton refrigeration for double walls, and from 1.15 to 1.47 ton refrigeration for single walls, respectively. 5. In case of single walls, 50.8 to 61.4 percent to total refrigerating load during the long storage life is caused by the heat transferred into the room space through walls, ceiling and floor. On the other hand, 39.1 to 40.7 percent is for the double walls. 6. The design and average daily refrigerating load increases in linear proportion to the size of storage area. As the size increases, the increasing rate of the refrigerating load is raised in proportion to the heat transfer rate of the wall. 7. The refrigerating load during the long storage life has close relationship to the out-door air temperature. The maximum refrigeration load is shown in later May, which is amounted to about 50 percent to the design refrigerating load. 8. It is noted that when the wall material having high heat transfer rate, such as the single wall made of concrete, is used, heating facilities are required for the period of later December to early February.

  • PDF

A Study on the Heat Transfer Characteristics of the Radiant Chilled Ceiling Panel for Space Cooling (냉각된 복사천장패널의 열전달 특성에 관한 연구)

  • Lee, Tae-Won;Hwang, In-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.164-169
    • /
    • 2001
  • There is a chilled ceiling panel which carries out the air conditioning by radiation and convection between the room and cold ceiling panel surface. In order to verify heat transfer characteristics between them in cooling system with radiant chilled ceiling panel, analytical and experimental studies were performed for various design and operating parameters such as tube space and diameter, inlet water temperature, mass flow rate, cooling load, and so on. In this study, we found that the tube space and inlet water temperature were more important elements than the tube diameter and water flow rate for the performance of radiant chilled ceiling panel. The cooling capacity of the radiant chilled ceiling panel had the maximum value of $65W/m^{2}$ because the highest cooling capacity was limited by the condensation on the panel surface. The results of comparison between numerical analysis and experiment showed a resonable agreement qualitatively, especially for low cooling capacity.

  • PDF

Development of Roll Stability Control of Commercial Vehicles with Environment Information (환경 정보를 이용한 상용차량 전복 방지 알고리즘 개발)

  • Park, Dongwoo;Her, Hyundong;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • When it comes to commercial vehicles, their unique characteristics - center of gravity, size, weight distribution - make them particularly vulnerable to rollover. On top of that, conventional heavy vehicle brake exhibits longer actuation delays caused in part by long air lines from brake pedal to tires. This paper describes rollover prevention algorithm that copes with the characteristics of commercial vehicles. In regard of compensating for high actuating delay, predicted rollover index with short preview time has been designed. Moreover, predicted rollover index with longer preview time has been calculated by using road curvature information based on environment information. When rollover index becomes larger than specific threshold value, desired braking force is calculated in order to decrease the index. At the same time, braking force is distributed to each tire to make yaw rate track desired value.

A Study on the Fluid Flow and Heat Transfer Characteristics for the Wire-woven Bulk Kagome(WBK) Composed of Aluminum Helix Wires (알루미늄 나선형 와이어로 직조된 다층 Kagome Truss PCM의 유동 및 열전달 특성에 관한 연구)

  • Joo, Jai-Hwang;Kang, Bo-Seon;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Recently, ultra-lightweight materials with open, periodic cell structures take much attention owing to its potential for multi-functionality such as load bearing, thermal dissipation, and actuation. This paper presents experimental results on the fluid flow and heat transfer characteristics for the Wire-woven Bulk Kagome (WBK) composed of aluminum 1100 wires. The overall pressure drop and heat transfer of the WBK specimen was experimentally investigated under forced air convection condition. The pressure loss and heat transfer performance of the aluminum WBK were compared with other heat dissipation media. It was shown that heat transfer characteristics depended on relative density and surface area density. Comparison with metal foams and other heat dissipation media such as packed beds, lattice frame materials, louvered fins, and others suggests that the aluminum WBK competes favorably with the best available heat dissipation media in heat transfer performance.

An Experimental Study of Valve Seat Material Galling Characteristics in Waterworks

  • Park, Sung-Jun;Kim, Young-Tae;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • Environmental contamination creates shortages of potable water. In such situations, the leakage of water due to breakage or aging of rubber valve seats is a serious problem. Rubber is apt to break when it is placed between two materials that contact each other. One way to avoid water leakage due to rubber damage and breakdown is to replace the rubber with metal, which is currently taking place in water distribution systems. In tribology, a severe form of wear is characterized by local macroscopic material transfer or removal, or by problems with sliding protrusions when two solid surfaces experience relative sliding under load. One of the major problems when metal slides is the occurrence of galling. Experimentally, various conditions influence incipient galling, such as hardness, surface roughness, temperature, load, velocity, and the external environment. This study sought to verify the galling tendencies of metal according to its hardness, surface roughness, load, and sliding velocity, and determine the quantitative effect of each factor on the galling tendencies.

Performance Analysis of 6.78MHz Current Mode Class D Power Amplifier According to Load Impedance Variation (부하 임피던스 변화에 따른 6.78MHz 전류모드 D급 전력증폭기 특성 해석)

  • Go, Seok-Hyeon;Park, Dae-kil;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.166-171
    • /
    • 2019
  • This paper has designed a current mode class D power amplifier to increase the transmission efficiency of a 6.78 MHz wireless power transfer (WPT) transmitter and to ensure stable characteristics even when the transmitting and receiving coil intervals change. By reducing the loss due to the parasitic capacitor component of the transistor, which limits the theoretical efficiency of the linear amplifier, this research has improved the efficiency of the power amplifier. The circuit design simulator was used to design the high efficiency amplifier, and the power output and efficiency characteristics according to the load impedance change have been simulated and verified. In the simulation, 42.1 dBm output and 95% efficiency was designed at DC bias 30 V. The power amplifier was fabricated and showed 91% efficiency at the output of 42.1 dBm (16 W). The transmitting and receiving coils were fabricated for wireless power transfer of the drone, and the maximum power added efficiency was 88% and the output power was $42.1dBm{\pm}1.7dB$ according to the load change causing from the coil intervals.

Evaluation of Load Transfer Characteristics of Barrette Pile Based on Bi-directional Loading Tests (양방향 재하시험결과를 활용한 바렛말뚝의 하중전이특성 평가)

  • Park, Seong Wan;Lim, Dae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.41-49
    • /
    • 2009
  • Due to the increased size of civil infrastructure and the cost of materials, the needs exists for utilizing large sized cast-inplace piles in lieu of conventional precast piles. Among them, the barrette pile has become more commonly used in fields where a diaphragm wall is the retaining wall, to improve workability and economical efficiency, and to ensure hole stability under deep soil layers. In this paper, the bearing capacity and displacement characteristics of the barrette pile are evaluated by using the bi-directional loading test data obtained from four different sites. In addition, the design value of pile shaft resistance, ${\beta}$, is assessed with previous literatures and load transfer analysis. Finally, numerical analyses were performed to analyze the load-displacement behavior, and the interface effect on the piles, using the 3-dimensional finite element method.