• Title/Summary/Keyword: Load switch

Search Result 456, Processing Time 0.023 seconds

Dynamic Load Balancing Algorithm using Execution Time Prediction on Cluster Systems

  • Yoon, Wan-Oh;Jung, Jin-Ha;Park, Sang-Bang
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.176-179
    • /
    • 2002
  • In recent years, an increasing amount of computer network research has focused on the problem of cluster system in order to achieve higher performance and lower cost. The load unbalance is the major defect that reduces performance of a cluster system that uses parallel program in a form of SPMD (Single Program Multiple Data). Also, the load unbalance is a problem of MPP (Massive Parallel Processors), and distributed system. The cluster system is a loosely-coupled distributed system, therefore, it has higher communication overhead than MPP. Dynamic load balancing can solve the load unbalance problem of cluster system and reduce its communication cost. The cluster systems considered in this paper consist of P heterogeneous nodes connected by a switch-based network. The master node can predict the average execution time of tasks for each slave node based on the information from the corresponding slave node. Then, the master node redistributes remaining tasks to each node considering the predicted execution time and the communication overhead for task migration. The proposed dynamic load balancing uses execution time prediction to optimize the task redistribution. The various performance factors such as node number, task number, and communication cost are considered to improve the performance of cluster system. From the simulation results, we verified the effectiveness of the proposed dynamic load balancing algorithm.

  • PDF

An Efficient Load Balancing Technique Considering Forms of Data Generation in SDNs (SDN 환경에서의 데이터 생성 형태를 고려한 효율적인 부하분산 기법)

  • Yoon, Jiyoung;Kwon, Taewook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.247-254
    • /
    • 2020
  • The recent Internet environment is characterized by the explosion of certain types of data, as the data that people want is affected by certain issues. In this paper, we propose a load balancing technique that considers the data generation forms. The concept of this technique is to prioritize some type of data when it suddenly explodes. This is a technique to build an add-on middle box on a switch to monitor packets and give priority to a queue for load balancing. This technique worked when certain types of data exploded. SDN(Software Defined Networking) has the advantage of efficiently managing a number of network equipment. However, load balancing in the SDN environment has not been studied much. Applying the proposed load balancing technique in the SDN environment can save time and budget and easily implement our policies. When the proposed load balancing technique is applied to the SDN environment, it has been found that the techniques we want can be easily applied to the network systems, and that efficient data processing is possible when certain types of data explosion.

An Enhanced Adaptive Power Control Mechanism for Small Ethernet Switch (소규모 이더넷 스위치에서 개선된 적응적 전력 제어 메커니즘)

  • Kim, Young-Hyeon;Lee, Sung-Keun;Koh, Jin-Gwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.389-395
    • /
    • 2013
  • Ethernet is the most widely deployed access network protocol around the world. IEEE 802.3az WG released the EEE standard based on LPI mode to improve the energy efficiency of Ethernet. This paper proposes improved adaptive power control mechanism that can enhance energy-efficiency based on EEE from small Ethernet switch. The feature of this mechanism is that it predicts the traffic characteristic of next cycle by measuring the amount of traffic flowing in during certain period and adjusts the optimal threshold value to relevant traffic load. Performance evaluation results indicate that the proposed mechanism improves overall performance compared to traditional mechanism, since it significantly reduces energy consumption rate, even though average packet delay increases a little bit.

Characteristic of fuel Cell DC-AC Inverter Using New Active Clamping Method (새로운 능동 클램핑방식을 이용한 연료전지용 DC-AC 인버터의 특성)

  • Kim, C.Y.;Cho, M.C.;Mun, S.P.;Kim, Y.J.;Nakaoka, Mutsuo;Kim, H.S.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.337-340
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V], In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch S5 and S6 in the secondary switch, which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household.

  • PDF

Analytic Model of Four-switch Inverter-fed Driving System for Wye or Delta-connected Motor with Current Ripple Reduction Scheme

  • Lee, Dong-Myung;Jung, Jin-Woo;Heo, Seo Weon;Kim, Tae Heoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.109-116
    • /
    • 2016
  • This paper proposes an analytic model for four-switch inverter (FSI)-driven wye (Y) or delta (Δ)-connected motors with a current ripple reduction algorithm. FSIs employ four switches in controlling three-phase load instead of using six switches. They have split dc-link stage, and due to this inherent structure there exists the voltage difference between upper and lower capacitors, which results in distortion of the inverter output voltage. To study characteristics of FSIs, this paper presents an advanced simulation models of FSI-driven control system for 3-phase motor that can has a wire connection either Y or Δ. In addition, this paper introduces a current ripple reduction scheme that mitigates degradation of control performance due to the voltage difference between the dc-link capacitors. The validity of the proposed method and the analytic model is verified by simulations and experiments carried out with 1-HP induction machine with Y or Δ-connection

Development of a Lighting Control Switch Using Power Line Communication Technology (전력선 통신기술을 이용한 조명제어 스위치의 개발)

  • Song Jae-yong;Moon Seung-bo;kil Gyung-suk;Lee Gyung-soo;Kim Chang-yul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.792-797
    • /
    • 2005
  • Lighting control switches based on the power line communication technology are developed and extended to incorporate dimming control to provide energy saving and appropriate illumination. The developed switch uses a general purpose microprocessor and associated electronics. Both the power line communication and the dimming function are implemented in one microprocessor, and it enables the low price commercialization. The frequency of the carrier was set at 250kHz considering the transmission data length and signal attenuation in power lines. Tests on prototypes in an low-voltage power lines have shown that the switches have a robust operation characteristics with the length of power lines and the variation of load capacities.

Optimal Soft-Switching Scheme for Bidirectional DC-DC Converters with Auxiliary Circuit

  • Lee, Han Rim;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.681-693
    • /
    • 2018
  • This paper proposes a soft-switching bidirectional dc-dc converter (BDC) with an auxiliary circuit. The proposed BDC can achieve the zero-voltage switching (ZVS) using an auxiliary circuit in the buck and boost operations. The auxiliary circuit supplies optimal energy for the ZVS operation of the main switches. The auxiliary circuit consists of a resonant inductor, a back-to-back switch and two capacitors. A small-sized resonant inductor and an auxiliary switch with a low-rated voltage can be used in the auxiliary circuit. Zero-current switching (ZCS) turn-on and turn-off of the auxiliary switches are possible. The proposed soft-switching scheme has a look-up table for optimal switching of the auxiliary switches. The proposed strategy properly adjusts the turn-on time of the auxiliary switch according to the load current. The proposed BDC is verified by the results of PSIM simulations and experiments on a 3-kW ZVS BDC system.

Study on the High Voltage Pulse Profile Characteristics of a Turbulently Heated Theta Pinch (난류가열 쎄타핀치의 고전압 펄스 발생에 관한 연구)

  • 강형보;정운관;육종철
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.11
    • /
    • pp.456-463
    • /
    • 1984
  • The fast-rising high-voltage pulse generation circuit system of a theta pinch is both theoretically and experimentally investigated. The idealized model of this circuit system is a hybrid circuit system composed of three parts: a lumped circuit part being consisted of a capacitor bank and a spark switch connected in series, another lumped circuit part being consisted of the Blumlein transmission line, whose end load is the pinch coil. the voltage difference between two ends of the pinch coil is formulated by analyzing this hybrid circuit system by means of the law of the signal propagation in the transmission line and Kirchhoff's laws. The expedient numerical method for computer calculation is developed to generate the pulse profile of the voltage difference across the pinch coil. The period of the experimentally measured main pulse is a fourth of the theoretical one neglecting the resistance of the pinch coil. We attribute this discrepancy to the modelling in the theoretical calculation that hte resistance and inductance of the spark switch and capacitor bank are assumed to be constant through discharge. Therefore, we can see that the rise time of the imploding magnetic-field pulse is mainly dependent on the spark switch and capacitor bank.

  • PDF

250 mV Supply Voltage Digital Low-Dropout Regulator Using Fast Current Tracking Scheme

  • Oh, Jae-Mun;Yang, Byung-Do;Kang, Hyeong-Ju;Kim, Yeong-Seuk;Choi, Ho-Yong;Jung, Woo-Sung
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.961-971
    • /
    • 2015
  • This paper proposes a 250 mV supply voltage digital low-dropout (LDO) regulator. The proposed LDO regulator reduces the supply voltage to 250 mV by implementing with all digital circuits in a$0.11{\mu}m$ CMOS process. The fast current tracking scheme achieves the fast settling time of the output voltage by eliminating the ringing problem. The over-voltage and under-voltage detection circuits decrease the overshoot and undershoot voltages by changing the switch array current rapidly. The switch bias circuit reduces the size of the current switch array to 1/3, which applies a forward body bias voltage at low supply voltage. The fabricated LDO regulator worked at 0.25 V to 1.2 V supply voltage. It achieved 250 mV supply voltage and 220 mV output voltage with 99.5% current efficiency and 8 mV ripple voltage at $20{\mu}A$ to $200{\mu}A$ load current.

High Efficiency Active Clamp Forward Converter with Synchronous Switch Controlled ZVS Operation

  • Lee Sung-Sae;Choi Seong-Wook;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.131-138
    • /
    • 2006
  • An active clamp ZVS PWM forward converter using a secondary synchronous switch control is proposed in this paper. The proposed converter is suitable for low-voltage and high-current applications. The structure of the proposed converter is the same as a conventional active clamp forward converter. However, since it controls the secondary synchronous switch to build up the primary current during a very short period of time, the ZVS operation is easily achieved without any additional conduction losses of magnetizing current in the transformer and clamp circuit. Furthermore, there are no additional circuits required for the ZVS operation of power switches. Therefore, the proposed converter can achieve high efficiency with low EMI noise, resulting from soft switching without any additional conduction losses, and shows high power dens~ty, a result of high efficiency, and requires no additional components. The operational principle and design example are presented. Experimental results demonstrate that the proposed converter can achieve an excellent ZVS performance throughout all load conditions and demonstrates significant improvement in efficiency for the 100W (5V, 20A) prototype converter.