• Title/Summary/Keyword: Load reduction

Search Result 2,367, Processing Time 0.032 seconds

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.

Biomechanical analysis of pullout strength of the pedicle screws in relation to change bone mineral density (반복 하중 후 골밀도 감소에 따른 척추경 나사못의 고정력(Pullout Strength)감소 형태 분석)

  • Jung, D.Y.;Lee, S.J.;Kim, D.S.;Shin, J.W.;Kim, W.J.;Suk, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.155-156
    • /
    • 1998
  • Screw loosening and subsequent pullout can be attributed to the reduction in bone mineral density in the vertebrae manifested by osteoporosis in which the decrease in fixation strength between the cancellous bone and screw threads are accelerated by repeated loads exerted by patients own weight and activities following the surgery. In this study, the change in pullout strength of the pedicle screws was investigated before and after repeated loads were imparted. For this purpose. Diapason pedicle screws $(6.7\times40mm)$ were inserted onto fresh porcine spine specimens (T1-L5) after bone mineral density was measured using a DEXA. With an MTS, an axial load was applied at a loading rate of 0.33mm/sec until failure to measure the maximum pullout strength. Flexion moment of 7.5N-m was then imparted at 0.5Hz for 2000 cycles. It was found that the maximum pullout strength was exponentially related to BMD regardless of load types ($107.71\;\times\;\exp^{(1.43{\times}BMD)}r^2=0.93$, P<0.0001 without repeated load; ($107.71\;\times\;\exp^{(2.19{\times}BMD)}r^2=0.78$, P<0.0001 with repeated load). The results suggest that the reduction in pullout strength for pedicle screws is far more prominent in osteoporotic spine than in normal spine especially as number of repeated load was increased. More importantly, it was demonstrated that the level of bone mineral density and the activity level of the patient should be evaluated in more detail for successful implementation of pedicle screw systems in spinal surgery.

  • PDF

Evaluation of NPS Pollutant Reduction of Rice Straw Mats in Field (경작지에서 볏짚거적의 비점오염물질 저감 평가)

  • Won, Chul-Hee;Shin, Min-Hwan;Choi, Yong-Hun;Lim, Kyoung-Jay;Han, Young-Han;Kwon, Jay-Hyouk;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.37-44
    • /
    • 2013
  • We have examined the effect of rice straw mat (RSM) on the reduction of non-point source (NPS) pollution loads at soybean cultivations. The slope of the experimental plot was about 3 %. Monitoring was carried out for four years at conventional tillage (CT) in 2008~2009 years and RSM covered tillage in 2010~2011 years. Thirty-two rainfall events were monitored and analyzed during the study period. During the 2 years of 2008 and 2009, 20 rainfall runoff events were monitored. But in 2010 years, only 2 rainfall runoff events could be monitored. And in 2011 years, 10 rainfall runoff events was monitored. It was because the RSM cover enhanced infiltration and reduce runoff in 2010 and 2011. Average NPS pollution load (organic matters) of the RSM covered field was reduced by 72.1~94.2 % compared to that of CT field. NPS pollution load of TN and TP reduced by 67.5 % and 55.7 %, respectively. Especially, SS pollution load was reduced by 97.3 %. Based on the results, rice straw mat cover was considered as a promising best management practices (BMP) to reduce NPS pollution load. However, it was recommended that the results are limited to the field conditions and the same experiments must be performed on different soil textures, slopes, and crops if it is applied to the development of policies.

Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.483-492
    • /
    • 2019
  • In the current study, the influence of the initial lateral (sweep) shape and the cross-sectional twist imperfection on the lateral torsional buckling (LTB) response of doubly-symmetric steel I-beams was investigated. The material imperfection (residual stress) was not considered. For this objective, standard European IPN 300 beam with different unbraced span was numerically analyzed for three imperfection cases: (i) no sweep and no twist (perfect); (ii) three different shapes of global sweep (half-sine, full-sine and full-parabola between the end supports); and (iii) the combination of three different sweeps with initial sinusoidal twist along the beam. The first comparison was done between the results of numerical analyses (FEM) and both a theoretical solution and the code lateral torsional buckling formulations (EC3 and AISC-LRFD). These results with no imperfection effects were then separately compared with three different shapes of global sweep and the presence of initial twist in these sweep shapes. Besides, the effects of the shapes of initial global sweep and the inclusion of sinusoidal twist on the critical buckling load of the beams were investigated to unveil which parameter was considerably effective on LTB response. The most compatible outcomes for the perfect beams was obtained from the AISC-LRFD formulation; however, the EC-3 formulation estimated the $P_{cr}$ load conservatively. The high difference from the EC-3 formulation was predicted to directly originate from the initial imperfection reduction factor and high safety factor in its formulation. Due to no consideration of geometric imperfection in the AISC-LFRD code solution and the theoretical formulation, the need to develop a practical imperfection reduction factor for AISC-LRFD and theoretical formulation was underlined. Initial imperfections were obtained to be more influential on the buckling load, as the unbraced length of a beam approached to the elastic limit unbraced length ($L_r$). Mode-compatible initial imperfection shapes should be taken into account in the design and analysis stages of the I-beam to properly estimate the geometric imperfection influence on the $P_{cr}$ load. Sweep and sweep-twist imperfections led to 10% and 15% decrease in the $P_{cr}$ load, respectively, thus; well-estimated sweep and twist imperfections should considered in the LTB of doubly-symmetric steel I-beams.

The Effect of Out-of-Plane Load on the In-Plane Shear Capacity of Reinforcement Concrete Shear Wall (철근 콘크리트 전단벽에서 면외 하중이 면내 전단성능에 미치는 영향)

  • Shin, Hye Min;Park, Jun Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.77-83
    • /
    • 2024
  • The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.

Evaluation of fracture reduction performance of fiber reinforced mortar according to fiber type (섬유종류에 따른 섬유보강 모르타르의 파괴저감성능 평가)

  • Roh, Jong-Chan;Kim, Gyu-Yong;Kim, Hong-Seop;Koo, Kyung-Mo;Yoon, Min-Ho;Yoo, Jae-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.38-39
    • /
    • 2013
  • In this study, in regard to fiber reinforced mortar mixing steel fiber and 4types of organic fiber, impact test was carried out. Because to predict fracture reduction performance with flexural, tensile strength when types of fiber were different as impact reduction performance of concrete is closely related with toughness such as flexural strength, tensile strength and fracture energy etc. As a result, enhancement of toughness by fiber reinforcement controls the spall of rear. On the other hand in case of steel fiber relatively turned up high toughness in appropriate load compared with organic fiber but in same mixing rate, impact reduction performance by projectile showed low performance due to few number of an individual of mixing.

  • PDF

Loss Reduction in Heavy Loaded Distribution Networks Using Cyclic Sub Tree Search (순환적 부분트리 탐색법을 이용한 중부하 배전계통의 손실최소화)

  • Choi, Sang-Yule;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.5
    • /
    • pp.241-247
    • /
    • 2001
  • Network reconfiguration in distribution systems is realized by changing the status of sectionalizing switches, and is usually done for loss reduction of load balancing in the system. This paper presents an effective heuristic based switching scheme to solve the distribution feeder loss reduction problem. The proposed algorithm consists of two parts. One is to set up a decision tree to represent the various switching operations available. Another is to apply a proposed technique called cyclic best first search. the proposed algorithm identify the most effective the set of switch status configuration of distribution system for loss reduction. To demonstrate the validity of the proposed algorithm, numerical calculations are carried out the 32, 69 bus system models.

  • PDF

LOW FUEL CONSUMPTION AND LOW EMISSIONS - ELECTROMECHANICAL VALVE TRAIN IN VEHICLE OPERATION

  • Pischinger, M.;Salber, W.;Staay, F.V.D.;Baumgarten, H.;Kemper, H.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 2000
  • The electromechanical valve train (EMV) technology allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel-ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way-catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement can be used for each individual cylinder and engine cycle. A load control strategy using a "Late Intake Valve Open" (LIO) provides a reduction in start-up HC emissions of approximately 60%. Due to reduced wall-wetting, the LIO control strategy improves the transition from start to idle. "Late Exhaust Valve Open" (LEO) timing during the exhaust stroke leads to exhaust gas afterburning and, thereby, results in high exhaust gas temperatures and low HC emissions. Vehicle investigations have demonstrated an improved accuracy of the air-fuel-ratio during transient operation. Results in the New European Driving Cycle have confirmed a reduction in fuel consumption of more than 15% while meeting EURO IV emission limits.

  • PDF

Optimal Design of Laminate Composites with Gradient Structure for Weight Reduction

  • Back, Sung-Ki;Kang, Tae-Jin;Lee, Kyung-Woo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.68-72
    • /
    • 1999
  • In an effort to construct a structure under the design principle of minimal use of materials for maximum performances, a discrete gradient structure has been introduced in laminate composite systems. Using a sequential linear programming method, the gradient structure of composites to maximize the buckling load was optimized in terms of fiber volume fraction and thickness of each layer. Theoretical optimization results were then verified with experimental ones. The buckling load of laminate composite showed maximum value with the outmost [$0^{\circ}$] layer concentrated by almost all the fibers when the ratio of length to width(aspect ratio) was less than 1.0. But when the aspect ratio was 2.0, the optimum was determined in a structure where the thickness and fiber volume fraction were well balanced in each layer. From the optimization of gradient structure, the optimal fiber volume fraction and thickness of each layer were proposed. Experimental results agreed well with the theoretical ones. Gradient structures have also shown an advantage in the weight reduction of composites compared with the conventional homogeneous structures.

  • PDF

A Study on the Characteristics of NOx Reduction by Urea-SCR System for a Light-Duty Diesel Engine (Urea-SCR 시스템에 의한 소형 디젤엔진의 NOx 저감 특성에 관한 연구)

  • Nam, Jeong-Gil;Lee, Don-Chool;Choi, Joo-Yol;Choi, Jae-Sung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.521-527
    • /
    • 2005
  • The effects of an urae injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine are investigated experimentally. The urea quantity was controlled by NOx quantity and MAF(Manifold Air Flow). The urea injection must be precisely metered and then I used the urea syringe pump. I have tested 4 kinds of items that were with the EGR base engine and without the EGR engine. Then I tested each urea-SCR(Selective Catalytic Reduction) system. As the results, I can caculate the SUF(Stoichiometric Urea Flow) and visualize the NOx results by variation of engine speed and engine load. Also, I can make the NOx map. Therfore, I knew that NOx reduction effects of the urea-SCR system without the EGR engine were better than the with EGR base engine except of low load and low speed.

  • PDF