• Title/Summary/Keyword: Load point outage

Search Result 28, Processing Time 0.025 seconds

Development of a Numerical Analysis Method for the Outage Cost Assessment at Load Points (부하지점별 공급지장비추정을 위한 수치해석적 방법의 개발)

  • Choi, Jae-Seok;Kim, Hong-Sik;Moon, Seung-Pil;Kang, Jin-Jong;Kim, Ho-Yong;Park, Dong-Wook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.11
    • /
    • pp.549-557
    • /
    • 2000
  • This study proposes a new numerical analysis method for assessing the outage cost of the composite power system with considering transmission system at load points. The proposed method comes from combination of the expected energy not served curve(EENSC) with the marginal outage cost function obtained at load points. Uncertainty of the outages of the generation and transmission systems was also included in this study. This study can be categorized into three processing parts as like as follows. Firstly, EENSC at load points was developed newly from the composite power system effective load duration curve which has been proposed by the authors. Secondly, this study proposes a new technical method for determining the coefficients of the marginal outage cost functions at load points in the composite power system(Generation and Transmission systems). It is a main key point that the mathematical expression for the marginal outage cost function at a load point is formulated and evaluated using relations between the GNP (or GDP) and the electrical energy demand at the load pint. Finally, the outage cost was calculated in this paper by combining the proposed EENSC with the marginal outage cost function evaluated at each load point. It is another important feature that the average costs for future at load points can be forescasted using the proposed approach. The effectiveness of the proposed new approach is demonstrated by the case studies with the IEEE-RTS.

  • PDF

A Study on Construction of the CMELDC at Load Points (각 부하지점별 유효부하지속곡선 작성법에 관한 연구)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.195-198
    • /
    • 2000
  • This paper illustrates a new method for constructing composite power system effective load duration curve(CMELDC) at load points. The main concept of proposed method is that the CMELDC can be obtain from convolution integral processing of the outage probabilistic distribution function of not supplied power and the load duration curve given at each load point. The effective load duration curve (ELDC) at HLI plays an important part in probabilistic production simulation, reliability evaluation, outage cost assessment and power supply margins assesment for power system planning and operation. And also, the CMELDC at HLII will extend the application areas of outage cost assessment and reliability evaluation at each load point. The CMELDC at load points using the Monte Carlo method and a DC load flow constrained LP have already been developed by authors. The effective load concept at HLII, however, has not been introduced sufficiently in last paper although the concept is important. In this paper, the main concept of the effective load at HLII which is proposed in this study is defined in details as the summation of the original load and the probabilistic loads caused by the forced outage of generators and transmission lines at this load point. The outage capacity probabilistic distribution function at HLII can be obtained by combining the not supplied powers and the probabilities of the not supplied powers at this load point. It si also expected that the proposed CMELDC can be applied usefully to research areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. at HLII in future. The characteristics and effectiveness of this methodology are illustrated by case study of IEEE-RTS.

  • PDF

The Reliability Evaluation and Outage Cost Assessment of Composite Power System (복합전력계통의 유효부하지속곡선을 이용한 신뢰도 평가 및 공급지장비 추정)

  • Moon, Seung-Pil;Kim, Hong-Sik;Jang, Soon-Ryong;Choi, Jae-Seok;Kang, Jin-Jung;Cho, Jong-Man
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1033-1035
    • /
    • 1998
  • This paper presents a new analytical method for assessing outage cost of composite power system with considering transmission system uncertainty. Composite power system ELDC(CMELDC) was developed and proposed from reliability evaluation of composite power system in order to analysis the outage cost on HLII. In this study, considering the characteristic of each load point, the CMELDC was used for outage cost assessment and reliability evaluation at each load point. The characteristics and effectiveness of this methodology are illustrated by the case study (IEEE-RTS 24Buses).

  • PDF

Development of Outage Cost Impact Index Function of Electricity Energy and Outage Cost Assessment using WOROCAIS (전력에너지 공급지장비의 충격도지수 함수개발 및 WOROCAIS를 이용한 이의 추정에 관한 연구)

  • Lim, Jin-Taek;Choi, Jae-Seok;Jeon, Dong-Hoon;Seo, Chul-Soo;Lee, Jae-Gul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1066-1073
    • /
    • 2013
  • This paper illustrates newly an outage cost impact index function(OCIIF). The assessment of the OCIIF is described using the Web Based Online Real-time Outage Cost Assessment and Information System(WOROCAIS) for power system outage cost assessment in Korea. The proposed OCIIF is not absolute but relative outage cost impact index function in view point of outage time using web based survey method for outage cost assessment. While conventional methodology does not consider short time outage cost assessment, the proposed OCIIF reflects short time outage. SCOF(Sector Customer Outage Function) in stead of the traditional SCDF(Sector Customer Damage Function) is defined and proposed newly in this paper. Based the SCOF, AVLL(Average Value of Loss Load) is newly proposed. The OCIIF is demonstrated by WOROCAIS in case study around 2,000 sample data surveyed by KEPCO in South Korea in recent.

A Framework for Determining Minimum Load Shedding for Restoring Solvability Using Outage Parameterization

  • Hwachang Song;Lee, Byongjun
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.73-78
    • /
    • 2004
  • This paper proposes a framework for determining the minimum load shedding for restoring solvability. The framework includes a continuation power flow (CPF) and an optimal power flow (OPF). The CPF parameterizes a specified outage from a set of multiple contingencies causing unsolvable cases, and it traces the path of solutions with respect to the parameter variation. At the nose point of the path, sensitivity analysis is performed in order to achieve the most effective control location for load shedding. Using the control location information, the OPF for locating the minimum load shedding is executed in order to restore power flow solvability. It is highlighted that the framework systematically determines control locations and the proper amount of load shedding. In a numerical simulation, an illustrative example of the proposed framework is shown by applying it to the New England 39 bus system.

Development of a New Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation (각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법의 개발)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok;No, Dae-Seok;Cha, Jun-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.431-439
    • /
    • 2001
  • This Paper illustrates a new numerical analysis method using a nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC(composite power system effective load duration curve) based on the new effective load model at HLll(Hierarchical Level H) has been developed also. The CMELDC can be obtained from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed in this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLll will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of MRBTS(Modified Roy Billinton Test System).

  • PDF

Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation (각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법)

  • Kim, Hong-Sik;Moon, Seung-Pil;Choi, Jae-Seok;Rho, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.112-115
    • /
    • 2001
  • This paper illustrates a new nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC based on the new effective load model at HLII has been developed also. The CMELDC can be obtain from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed. In this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLII will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of a test system.

  • PDF

A Study on Nodal Probabilistic Reliability Evaluation at Load Points (각 지역별 확률론적 신뢰도 평가에 관한 연구)

  • Kim, Hong-Sik;Moon, Seung-Pil;Choi, Jae-Seok;Cha, Jun-Min
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.206-209
    • /
    • 2001
  • This paper illustrates a new method for reliability evaluation at load points in a composite power system. The algorithm includes uncertainties of generators and transmission lines as well as main transformers at substations. The CMELDC based on the new effective load model at HLII has been developed also. The CMELDC can be obtain from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. The CMELDC based on the new model at HLII will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of a small test system.

  • PDF

Development of Analytical Reliability Evaluation Program in Distribution Systems (배전계통의 해석적 공급 신뢰도 평가 프로그램 개발)

  • Han, Seong-Ho;Rhee, Wook;Kim, Jae-Chul
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.5
    • /
    • pp.64-70
    • /
    • 1995
  • This paper presents a practical approach to evaluate the reliability indices of electric distribution systems. The use of reliability evaluation is placed with framework of distribution system planning and operation. In this paper, the reliability model is based on an analytical method, connecting component failure to load point outage in each section. Five cases are reported in the paper to study the effect of varying failure rates and repair times on real distribution systems. Simulations are preformed by the developed reliability evaluation program.

  • PDF

Distribution System Reliability Evaluation Considering Protective System (보호시스템을 고려한 배전계통의 신뢰도 평가)

  • Kim, S.H.;Jwa, C.K.;Choi, B.Y.;Choi, S.H.;Kim, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1003-1005
    • /
    • 1997
  • To evaluate the quality of a system or its ability to perform a required function, it is necessary to quantify the reliability of that system. The reliability techniques are based on the concept of expected failure rate and average-outage-duration method. For each load point, the expected failure rate, average outage duration and average annual outage time are evaluated. This paper deals with the reliability evaluation for distribution system including the protection relay system. In evaluating the reliability, it suggests a method for the analysis of protective system reliability, that provides a probabilistic measure of the success of the protective apparatus to perform its intended function. The analysis shows the dependency of success on the reliability of many components, and the way this reliability may be enhanced by redundancy.

  • PDF