• 제목/요약/키워드: Load monitoring

검색결과 1,009건 처리시간 0.029초

Impact identification and localization using a sample-force-dictionary - General Theory and its applications to beam structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter
    • Structural Monitoring and Maintenance
    • /
    • 제3권3호
    • /
    • pp.195-214
    • /
    • 2016
  • Monitoring of impact loads is a very important technique in the field of structural health monitoring (SHM). However, in most cases it is not possible to measure impact events directly, so they need to be reconstructed. Impact load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response function are usually known. Generally this leads to a so called ill-posed inverse problem. It is reasonable to use prior knowledge of the force in order to develop more suitable reconstruction strategies and to increase accuracy. An impact event is characterized by a short time duration and a spatial concentration. Moreover the force time history of an impact has a specific shape, which also can be taken into account. In this contribution these properties of the external force are employed to create a sample-force-dictionary and thus to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The reconstruction approach shown here is capable to estimate simultaneously the magnitude of the impact and the impact location, with a minimum number of accelerometers. The possibility of reconstructing the impact based on a noisy output signal is first demonstrated with simulated measurements of a simple beam structure. Then an experimental investigation of a real beam is performed.

u-환경에서 헬스케어 응용 서비스 지원 액티브 모델 기반의 서비스 컴포넌트에 관한 연구 (A study of Service Component Based on Active Model Support Healthcare Application Service in u-Environment)

  • 정창원;주수종
    • 인터넷정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.31-40
    • /
    • 2010
  • 본 논문에서는 u-헬스케어 응용 서비스 지원을 위한 액티브 모델 기반의 서비스 컴포넌트를 제안한다. 서비스 컴포넌트는 헬스케어 응용 서비스의 개발을 지원하기 위해 기능을 세분화하여 구현하였다. 특히, 분산 객체그룹 프레임워크를 기반으로 다양한 헬스케어 홈서비스에 분산객체 기술을 이용하여 통합된 환경에서 적응형 정보 서비스를 제공하는데 중점을 두었다. 그리고 본 논문에서 제안한 서비스 컴포넌트를 헬스케어 홈 모니터링, 모바일 모니터링, 웹기반 모니터링과 같은 헬스케어 응용 서비스에 적용하여 수행 결과를 보인다. 또한 응답시간과 네트워크 부하와 시스템 부하에 대한 성능 평가 결과를 보였다.

Dynamic and static structural displacement measurement using backscattering DC coupled radar

  • Guan, Shanyue;Rice, Jennifer A.;Li, Changzhi;Li, Yiran;Wang, Guochao
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.521-535
    • /
    • 2015
  • Vibration-based monitoring is one approach used to perform structural condition assessment. By measuring structural response, such as displacement, dynamic characteristics of a structure may be estimated. Often, the primary dynamic responses in civil structures are below 5 Hz, making accurate low frequency measurement critical for successful dynamic characterization. In addition, static deflection measurements are useful for structural capacity and load rating assessments. This paper presents a DC coupled continuous wave radar to accurately detect both dynamic and static displacement. This low-cost radar sensor provides displacement measurements within a compact, wireless unit appropriate for a range of structural monitoring applications. The hardware components and operating mechanism of the radar are introduced and a series of laboratory experiments are presented to assess the performance characteristics of the radar. The laboratory and field experiments investigate the effect of factors such as target distance, motion amplitude, and motion frequency on the radar's measurement accuracy. The results demonstrate that the radar is capable of both static and dynamic displacement measurements with sub-millimeter accuracy, making it a promising technology for structural health monitoring.

광섬유 센서를 이용한 선체 구조의 Global 하중 추정에 관한 연구 (A Study for the Measurement of Global Loads on Ship Structure Using Fiber Optic Sensors)

  • 김명현;김영제;강성원;오민철
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.144-150
    • /
    • 2008
  • Ships and offshore structures are exposed to wave and engine excitation loadings during navigation and cargo/ballasting operations. These excessive loads may cause damages to hull and may result loss of life the ship. Therefore, it is important to develop a system that allow accurate measurements of global hull loads. The objective of the study is developing a fiber optic monitoring system that is capable of monitoring, recording and warning of the vessel performance. A method for measurement of global loads on a vessel, using strain measurements from a network of fiber optic strain sensors and extensive finite-element analyses(FEA) with idealistic load cases, is presented. The method has been successfully validated on the idealized ship structure model with strain sensors.

DEVELOPMENT OF TRANSVERSE STRENGTH MONITORING SYSTEM FOR LOADOUT, TOWING AND FLOATOFF OPERATION

  • 양영태;박병남;이춘보;송석부
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.83-87
    • /
    • 2002
  • 종강도 위주의 일반 상선의 LMC 의 경우는 단지 선박을 l 차원 Beam Model 로 단순화하여 선미로부터 선수까지의 Weight Distribution 과 Buoyancy Distribution 을 계산하여 두 값의 차이를 Shear Force 로 계산하고 Shear Force 적분값을 Bending Moment 로 계산한다. 횡강도가 중요시되는 Barge 선의 경우 Global Transverse Strength 같은 경우에는 위의 식을 적용할 수 있으나 복수의 바지선을 Hinge Type 이 아닌 Fixed Type 으로 고정시켜 사용할 경우 각각의 Connector 에 작용하는 Strength 값이 횡강도의 큰 비중을 차지한다. 일반적인 Load Master Computer 의 경우 이와 같은 계산이 불가능하며 NAPA 와 같은 전용 계산 프로그램의 경우 하나의 Condition 을 계산하는데 소요되는 시간이 많아 실질적인 Monitoring 은 불가능하다. 이에 특수목적의 Load Master Computer(ShipManager-88) 를 제작하게 되었고 이 Program 을 이용하여 Loadout 과 Floatoff 의 Simulation 을 수행하고 Monitoring 하였다. ShipManager-88 은 Barge 선의 종강도 횡강도, Stability, Trim & Draft 등을 계산하며 Sequence 기능으로 실제 LOADOUT 과 FLOATOFF 시의 모의시뮬레이션을 수행해 볼 수 있으며 Online Interlace 제공으로 Tank 에 설치된 센서에서 Level 값을 받아 실시간으로 현재 선박의 상태를 정확하게 계산할 수 있다. 실제 LOADOUT and FLOATOFF 를 수행하면서 Check 한 부분은 종강도, 횡강모 Stability, Deform, Connector Strength, Level 등을 Check 하였고 종방향의 LOADOUT 이 불가능한 Project 를 위해 Transverse LOADOUT 을 이용할 계획이다.

  • PDF

Damage detction and characterization using EMI technique under varying axial load

  • Lim, Yee Yan;Soh, Chee Kiong
    • Smart Structures and Systems
    • /
    • 제11권4호
    • /
    • pp.349-364
    • /
    • 2013
  • Recently, researchers in the field of structural health monitoring (SHM) have been rigorously striving to replace the conventional NDE techniques with the smart material based SHM techniques, employing smart materials such as piezoelectric materials. For instance, the electromechanical impedance (EMI) technique employing piezo-impedance (lead zirconate titanate, PZT) transducer is known for its sensitivity in detecting local damage. For practical applications, various external factors such as fluctuations of temperature and loading, affecting the effectiveness of the EMI technique ought to be understood and compensated. This paper aims at investigating the damage monitoring capability of EMI technique in the presence of axial stress with fixed boundary condition. A compensation technique using effective frequency shift (EFS) by cross-correlation analysis was incorporated to compensate the effect of loading and boundary stiffening. Experimental tests were conducted by inducing damages on lab-sized aluminium beams in the presence of tensile and compressive forces. Two types of damages, crack propagation and bolts loosening were simulated. With EFS for compensation, both cross-correlation coefficient (CC) index and reduction in peak frequency were found to be efficient in characterizing damages in the presence of varying axial loading.

전력케이블의 열화측정을 위한 부하전류 및 온도측정 시스템 (Load current and Temperature measurement system for Measuring the Degradation of Power cable)

  • 박용규;조영식;이관우;엄기홍;박대희
    • 조명전기설비학회논문지
    • /
    • 제29권2호
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, there has been a surge in interest in equipment diagnosis and monitoring technology from the perspective of providing quality electricity in terms of reliability and safety. In order to meet the electrical demands of consumers, reliability of power supply needs to be maintained. For this purpose, a monitoring system for power cable is very important. Since real-time measuring equipment has many advantages, it is highly applicable. By measuring the load current and the surface temperature of power cables, we have monitored and identified the deterioration phenomena of power cables in operation. Since direct measurement of the cable conductor temperature is not easy, we have measured the surface temperature instead, and converted that temperature to obtain the conductor temperature of the cables. In addition, we have designed a system to detect the deterioration processes of the power cables in operation.

Construction of a Remote Monitoring System in Smart Dust Environment

  • Park, Joonsuu;Park, KeeHyun
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.733-741
    • /
    • 2020
  • A smart dust monitoring system is useful for obtaining information on rough terrain that is difficult for humans to access. One of ways to deploy sensors to gather information in smart dust environment is to use an aircraft in the Amazon rainforest to scatter an enormous amount of small and cheap sensors (or smart dust devices), or to use an unmanned spacecraft to throw the sensors on the moon's surface. However, scattering an enormous amount of smart dust devices creates the difficulty of managing such devices as they can be scattered into inaccessible areas, and also causes problems such as bottlenecks, device failure, and high/low density of devices. Of the various problems that may occur in the smart dust environment, this paper is focused on solving the bottleneck problem. To address this, we propose and construct a three-layered hierarchical smart dust monitoring system that includes relay dust devices (RDDs). An RDD is a smart dust device with relatively higher computing/communicating power than a normal smart dust device. RDDs play a crucial role in reducing traffic load for the system. To validate the proposed system, we use climate data obtained from authorized portals to compare the system with other systems (i.e., non-hierarchical system and simple hierarchical system). Through this comparison, we determined that the transmission processing time is reduced by 49%-50% compared to other systems, and the maximum number of connectable devices can be increased by 16-32 times without compromising the system's operations.

도로교 안전관리 모니터링 시스템의 입력하중 측정을 위한 FBG 기반 하중 측정시스템 개발에 관한 연구 (A Study on the Development of FBG-Based Load Measurement System for Structural Health Monitoring of Highway Bridge)

  • 이규완;한종욱;김철영;박영석
    • 대한토목학회논문집
    • /
    • 제39권4호
    • /
    • pp.469-475
    • /
    • 2019
  • 구조물의 장기적인 안전관리를 위하여 교량 장기계측시스템이 도입되어 운영 중에 있다. 그러나 일반적인 교량 장기계측시스템은 응답만 측정하고 입력하중은 측정하지 못하고 있기 때문에, 추세분석에 의한 관리기준 상회여부만을 판단하고 있어 정량적인 구조계의 상태평가가 어려운 실정이다. 이러한 단점을 극복하기 위하여 본 논문에서는 도로교 입력하중 측정을 위한 FBG 기반 입력하중 측정센서를 개발하였으며, 실내실험을 통하여 그 타당성을 검증하였다.

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.