• Title/Summary/Keyword: Load model

Search Result 7,676, Processing Time 0.176 seconds

A Numerical Study of Cantilever Retaining Wall Sliding Behavior due to Surcharge Loading Condition (과재하중 재하에 따른 역 T형 옹벽의 활동거동에 관한 수치해석)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Lee, Seung-Joo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.205-212
    • /
    • 2001
  • This paper is experimental and numerical research about the sliding behavior of cantilever retaining walls resisting surcharge loads. In experimental research, centrifuge model tests at the lg and 40 g-level were performed by changing the location of model footing and its width. Bearing capacity of model footing and characteristics of load-settlement and load-lateral displacement of retaining wall were investigated. Test results of bearing capacity were compared with modified jarquio method, based on the limit equilibrium method with elasticity theory. For the numerical analysis, the commericially available program of FLAC was used by implementing the hyperbolic constitutive relationships to compare with test result about load-settlement and load-displacement of retaining wall, bearing capacity of strip footing.

  • PDF

An integral square error-based model predictive controller for two area load frequency control

  • Kassem, Ahmed M.;Sayed, Khairy;El-Zohri, Emad H.;Ali, Hossam H.
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.79-90
    • /
    • 2017
  • The main objective of load frequency control (LFC) is to keep the frequency value at nominal value and force deviation of the frequency to zero in case of load change. This paper suggests LFC by using a model predictive control (MPC), based on Integral Square Error (ISE) method designed to optimize the damping of oscillations in a two-area power system. The MPC is designed and simulated with a model system in state space, for robust performance in the system response. The proposed MPC is tuned by ISE to achieve superior efficiency. Moreover, its performance has been assessed and compared with the PI and PID conventional controllers. The settling time and overshoot with MPC are extremely minimized as compared with conventional controllers.

Model Reference Adaptive Control of the Pneumatic System with Load Variation (부하 변동 공압계의 모델 기준 적응제어)

  • Oh, Hyeon-il;Kim, In-soo;Kim, Gi-bum
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, a model reference adaptive control (MRAC) scheme is applied for the precise and robust motion control of a pneumatic system with load variation. The reference model for MRAC is designed systematically using linear quadratic Gaussian control with loop transfer recovery (LQG/LTR). The sigmoid function of inverse velocity is used to compensate for the nonlinear friction force between the sliding parts. The experimental results show that MRAC effectively overcame the limit of the PID controller when there was unknown disturbance, including abrupt load variation and model uncertainty in the pneumatic control system.

System Development for the estimation of Pollutant Loads on Reservoir

  • Shim, Soon-Bo;Lee, Yo-Sang;Koh, Deuk-Koo
    • Korean Journal of Hydrosciences
    • /
    • v.10
    • /
    • pp.35-46
    • /
    • 1999
  • An integrated system of GIS and water quality model was suggested including the pollutant loads from the watershed. The developed system consits of two parts. First part is the information on landuse and several surface factors concerning the overland flow processes of water and pollutants. Second part is the modeling modules which include storm event pollutant load model(SEPLM), non-storm event pollutant load model(NSPLM), and river water quality simulation model(RWQSM). Models can calculate the pollutant load from the study area. The databases and models are linked through the interface modules resided in the overall system, which incorporate the graphical display modules and the operating scheme for the optimal use of the system. The developed system was applied to the Chungju multi-purpose reservoir to estimate the pollutant load during the four selected rainfall events between 1991 and 1993, based upon monthly basis and seasonal basis in drought flow, low flow, normal flow and wet flow.

  • PDF

Deformation Mechanism of the Roller Hemming Process with the Finite Element Analysis (유한요소해석을 이용한 롤러헤밍 공정의 변형기구 분석)

  • Rho, J.D.;Kwak, J.H.;Kim, S.H.;Ju, Y.H.;Kim, J.H.;Shin, H.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.325-331
    • /
    • 2016
  • In this paper, a three-dimensional part model is constructed for the finite element analysis of hemming models where hemming defects frequently occur. The roller path is modeled as the boundary condition with the one-dimensional beam element and the revolute joint model. With the constructed part model and the roller movement, a finite element analysis has been pursued in order to identify the hemming load and hemming defects such as wrinkling in the flange region. The analysis result shows that the maximum hemming load occurs in the intake situation while oscillatory behavior of the load is found especially when hemming the curved model because of wrinkle generation. This paper compares the amplitude and the period of wrinkle between the analysis result and the experiment, which shows good agreement with each other.

Characteristics of Bearing Capacity for H pile by Model Test (모형실험을 이용한 H말뚝의 지지력 특성)

  • 오세욱;이준대
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.99-105
    • /
    • 2001
  • This paper presents results km a series of model tests oil vertically loaded single piles to compare the behaviors of H and pipe piles under the same ground condition. The aims of this paper were to compare the bearing capacity of H-pile md pipe piles under in the same ground condition and to estimate the effect of gravity acceleration and relative soil density. Relative density of soil were made to be 40%, 80% and embedded length of pile on sand was increased by 10, 12, 14, 16 times of the diameter of pile, respectively. As a results of test series, allowable load of H-pile is from 6.4% to 18.2% larger than allowable load of pipe pile in relative density 80% and from 9.1% to 39.4% larger than allowable load of pipe pile in relative density 40%. As a results of numerical analysis, we were predicted behaviour of stress-displacement of pile with model test. In the case of relative density 80% and 40%, bearing capacity of H pile represent from 17.74% to 18.6% larger than allowable load of pipe pile.

  • PDF

The Mechanical Behavior of Steel Circular Caisson by Horizontal Load (水平載荷에 따른 鋼製圓筒 케이슨의 力學的 擧動)

  • 장정욱
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.3
    • /
    • pp.141-150
    • /
    • 1998
  • Model tests were performed to examine the mechanical behavior of steel circular caisson by horizontal load. It was generally found that displacements and bottom pressure of the caisson model were increased rapidly at the local plastic load. The maximum displacement was measured at the loading point, whereas the less displacement was measured at the upper part of the caisson model. The bottom pressure was getting higher, as it was nearer the loading side. Furthermore, the increase ratio of the bottom pressure was higher as the load was increased.

  • PDF

Recursive Short-Term Load Forecasting Using Kalman Filter and Time Series (칼만 필터와 시계열을 이용한 순환단기 부하예측)

  • 박영문;정정주
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.6
    • /
    • pp.191-198
    • /
    • 1983
  • This paper describes the aplication of different model which can be used for short-term load prediction. The model is based on Bohlin's approach to first develop a load profile model representing the nominal load component and the Box-Jenkins approach is used to predict residuals. An on-line algorithm using Kalman Filter and Time Series is implemented for and hour-ahead prediction. In the Kalman Filter system equation and measurement equation were fixed and parameters of Time Series were varied week after week. A set of data for Korea Electric Power Corporation from April to June 1981 was used for the evaluation of the model. As the result of this simulation 1.2% rms error was acquired.

  • PDF

Load Transfer Mechanism of Hybrid Model of Soil-nailing and Compression Anchor (쏘일네일링과 앵커가 결합된 하이브리드 공법의 하중전이 메커니즘)

  • Seo, Hyung-Joon;Kim, Hyun-Rae;Han, Shin-In;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • The load transfer mechanism of hybrid model of soil-nailing and compression anchor is studied in this paper. The hybrid model is composed of an anchor bar (installed at the tip) with two PC strands and a steel bar. It can make active behavior of skin friction by applying the pre-stress. In this paper, the load transfer mechanisms of soil-nailings, compression anchors, and hybrid models, respectively, are obtained from skin friction theory and load transfer theory. Field pullout tests are performed to identify the load transfer mechanism and experimental results are compared with analytical solution. In case of soil-nailings, the tension load is transferred from face to tip, however, in case of compression anchors, the compression load is transferred from tip to face. The experimental behavior of the hybrid model is similar to that of compression anchor when only pre-stress is applied. If the pullout test is performed by simultaneously pulling out the anchor and the nail, the compression load is dominant at the tip and tension load is dominant at the face. The load transfer mechanism of the hybrid model shows the combined behavior of soil-nailings with compression anchors.

Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Hedayat, Ahmadreza;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.445-452
    • /
    • 2018
  • In this paper the effects of particle size and model scale of concrete have been investigated on point load index, tensile strength, and the failure processes using a PFC2D numerical modeling study. Circular and semi-circular specimens of concrete were numerically modeled using the same particle size, 0.27 mm, but with different model diameters of 75 mm, 54 mm, 25 mm, and 12.5 mm. In addition, circular and semi-circular models with the diameter of 27 mm and particle sizes of 0.27 mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, and 1.27 mm were simulated to determine whether they can match the experimental observations from point load and Brazilian tests. The numerical modeling results show that the failure patterns are influenced by the model scale and particle size, as expected. Both Is(50) and Brazilian tensile strength values increased as the model diameter and particle sizes increased. The ratio of Brazilian tensile strength to Is(50) showed a reduction as the particle size increased but did not change with the increase in the model scale.