• 제목/요약/키워드: Load forecasting

검색결과 302건 처리시간 0.022초

수요측 단기 전력소비패턴 예측을 위한 평균 및 시계열 분석방법 연구 (A Study on Forecasting Method for a Short-Term Demand Forecasting of Customer's Electric Demand)

  • 고종민;양일권;송재주
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.1-6
    • /
    • 2009
  • The traditional demand prediction was based on the technique wherein electric power corporations made monthly or seasonal estimation of electric power consumption for each area and subscription type for the next one or two years to consider both seasonally generated and local consumed amounts. Note, however, that techniques such as pricing, power generation plan, or sales strategy establishment were used by corporations without considering the production, comparison, and analysis techniques of the predicted consumption to enable efficient power consumption on the actual demand side. In this paper, to calculate the predicted value of electric power consumption on a short-term basis (15 minutes) according to the amount of electric power actually consumed for 15 minutes on the demand side, we performed comparison and analysis by applying a 15-minute interval prediction technique to the average and that to the time series analysis to show how they were made and what we obtained from the simulations.

신경회로망을 이용한 냉방부하예측에 관한 연구 (The Study on Cooling Load Forecast using Neural Networks)

  • 신관우;이윤섭
    • 설비공학논문집
    • /
    • 제14권8호
    • /
    • pp.626-633
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity, The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data is approached to the actual data.

요일 요인을 고려한 하절기 전력수요 예측 (The Load Forecasting in Summer Considering Day Factor)

  • 한정희;백종관
    • 한국산학기술학회논문지
    • /
    • 제11권8호
    • /
    • pp.2793-2800
    • /
    • 2010
  • 이 논문에서는 여름철 일일 전력수요 총량을 예측하는 회귀모형을 개발한다. 경제적인 전력 생산계획을 수립하기위해 예측 오차율을 낮추는 것은 매우 중요하다. 전력수요가 크게 증가하는 여름철 전력수요를 예측하기위해 기존 연구에서는 외기온도 및 직전일 전력수요를 고려하였으나, 이 논문에서는 기존 연구에서 제시한 예측 오차율을 개선하기 위해 전력수요의 요일별 특성을 추가적으로 고려한 회귀모형을 개발한다. 이 논문에서는 여름철 전력수요의 요일별 패턴은 최고차항의 계수가 음수인 2차 함수 형태를 나타냄을 확인하였다. 즉, 2005년부터 2009년까지 5년간의 여름철 전력수요 패턴을 살펴본 결과 전력수요 총량은 일요일에 가장 낮고 월요일부터 증가하다가 수요일이나 목요일부터 다시 감소하는 패턴을 보인다. 이 논문에서 제안하는 여름철 전력수요 예측 회귀모형의 타당성을 검증하기 위해 2005년부터 2009년까지 실제 전력수요 데이터를 바탕으로 여름철 전력수요 총량을 예측한 결과, 평균 오차율(MAPE: Mean Absolute Percentage Error)과 최대 오차율(MPE: Maximum Percentage Error)이 각각 3.08%와 8.99%를 넘지 않는 수준임을 확인하였다. 또한 기존 연구에서 제시한 방법과 비교하여도 평균 오차율과 최대 오차율 모두 기존 연구에서 제시한 오차율보다 우수함을 확인하였다.

지역별 장기 전력수요 예측 (Long-term Regional Electricity Demand Forecasting)

  • 권영한;이창호;조인승;김재균;김창수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.87-91
    • /
    • 1990
  • Regional electricity demand forecasting is among the most important step for lone-term investment and power supply planning. This study presents a regional electricity forecasting model for Korean power system. The model consists of three submodels, regional economy, regional electricity energy demand, and regional peak load submodels. A case study is presented.

  • PDF

변압기 부하패턴 분석을 위한 시간 데이터마이닝 연구 (Study of Temporal Data Mining for Transformer Load Pattern Analysis)

  • 신진호;이봉재;김영일;이헌규;류근호
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1916-1921
    • /
    • 2008
  • This paper presents the temporal classification method based on data mining techniques for discovering knowledge from measured load patterns of distribution transformers. Since the power load patterns have time-varying characteristics and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Therefore, we propose a temporal classification rule for analyzing and forecasting transformer load patterns. The main tasks include the load pattern mining framework and the calendar-based expression using temporal association rule and 3-dimensional cube mining to discover load patterns in multiple time granularities.

새로운 전력 부하모형 (New Electricity Load Model)

  • 김주락;최준영;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.289-291
    • /
    • 2000
  • In a competitive electricity power market, the price of electricity changes instantly, that of conventional market is predetermined and hardly changes. In such a new environment, customers' behaviors change instantly according to the changing electricity prices. If we develop a electricity load model that well describes the behavior of electricity consumers, we can utilize that model in forecasting the amount of future load, solving the load flow problem and finding the weak point of the system. In this paper new electricity model that considers the price of electricity and power factor of the load is presented. While conventional load model, which is demand function of electricity, uses the price of real and reactive power as the independent variable of the demand function. this new load model uses price of real power and penalty factor according to the power factor for the calculation of amount of electricity demand.

  • PDF

신경회로망을 이용한 일일 냉방부하 예측에 관한 실험적 연구 (Experimental Study on Cooling Load Forecast Using Neural Networks)

  • 신관우;이윤섭;김용태;최병윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.61-64
    • /
    • 2001
  • The electric power load during the peak time in summer is strongly affected by cooling load. which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data approached to the actual data.

  • PDF

사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크 (A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network)

  • 황유섭
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.43-57
    • /
    • 2012
  • 제조업에 있어서 판매 후 서비스 건수와 내용 등은 향후 서비스 제공을 위한 자원배분의 효율성 증진과 서비스 품질 향상을 위해서도 매우 중요한 정보이다. 따라서 기업들은 향후 발생하는 판매 후 서비스에 대해 정확히 예측하고 그에 따라 적절히 대처하는 능력을 확보할 필요성이 제조업을 중심으로 증가하고 있다. 그러나 실제로 이들 기업들이 활용하고 있는 서비스 수요예측 방법들은 전통적인 통계적인 예측기법이거나, 시뮬레이션을 기반한 기법들이다. 예를 들면, 전통적인 통계적인 예측기법으로는 회귀분석(regression analysis)의 경우, 다양한 제품모델에 대한 판매 후 서비스 발생 패턴이 선형적인 관계가 매우 적음에도 불구하고 선형으로 가정하여 추정한다는 점과 적정한 회귀식을 가정하여야 되며, 이러한 가정이 실제 경영환경에서는 매우 어렵다는 점 등이 기존의 예측기법들의 한계점으로 지적되고 있다. 본 연구에서는 디지털 TV 모델을 생산 판매 하는 A사의 사례연구를 통하여 최근 인공지능연구에서 각광을 받고 있는 사례기반추론(case-based reasoning; CBR) 기법을 활용한 서비스 수요예측 프레임워크를 제안하고자 한다. 또한, 사례기반추론에서 핵심적인 역할 중 하나인 유사 사례추출 방법에 있어서 가장 일반적인 nearest-neighbor 방법 이외의 유사 사례추출 방법을 제안하고자 한다. 특히, 본 연구에서 제안하는 유사 사례추출 방법은 인공신경망(artificial neural network)을 활용한 자기조직화지도(Self-Organizing Maps : SOM) 군집화 기법을 활용한 유사 사례추출 방식으로 이를 활용한 서비스 수요예측 프레임워크에 구현하고, 실제 기업의 판매 후 서비스 데이터를 활용하여 본 연구에서 제안하는 서비스 수요 예측 프레임워크의 유효성을 실증적으로 검증하고자 한다.

데이터마이닝을 이용한 단기부하예측 (Short-term demand forecasting Using Data Mining Method)

  • 최상열;김형중
    • 조명전기설비학회논문지
    • /
    • 제21권10호
    • /
    • pp.126-133
    • /
    • 2007
  • 본 연구에서는 데이터 마이닝 기법을 이용하여 전력계통의 단기 부하 예측을 하는 방안을 제시한다. 기존의 단기 부하 예측은 시계열 분석 방법이 주를 이루었으며, 이러한 방법은 방대한 양의 자료를 기반으로 데이터베이스를 만들고 이를 이용하여 여러 가지 계수를 이용하여 수요를 예측함으로써 많은 시간과 노력이 소요되고 있다. 따라서 본 연구에서는 좀 더 적은 시간과 노력으로 부하예측이 가능하도록 데이터마이닝 기법을 이용하여 요일별 그리고 특수 일의 패턴을 분석하고 의사결정트리를 이용한 예측방법을 제시하고자 한다. 그리고 현재 전력거래소를 통해 거래되고 있는 계통한계가격과의 관계를 분석하여 예측 계수에 계통한계가격을 추가하여 예측방법을 제시하고자 한다.

빙축열 시스템의 지능형 냉방부하예측에 관한 연구 (The Study on Intelligent Cooling Load Forecast of Ice-storage System)

  • 고택범
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2061-2065
    • /
    • 2008
  • In the conventional operation of ice-storage system based on operator's experience and judgement, the failure in forecast of cooling load occurs frequently due to operator's misjudgement and unskilled operation. This study presents the method of constructing self-organizing fuzzy models which forecast tomorrow temperature, humidity and cooling load periodically for economic and efficient operation of ice-storage system. To check the effectiveness and feasibility of the suggested algorithm, the actual example for forecasting temperature, humidity and cooling load of ice- storage system in KEPCO training institute, Sokcho, is examined. The computer simulation results show that the accuracy of temperature, humidity, cooling load forecast of the suggested algorithm is higher than that of the conventional methods.