• Title/Summary/Keyword: Load current feedforward

Search Result 32, Processing Time 0.02 seconds

A Seamless Transfer Algorithm Based on Frequency Detection with Feedforward Control Method in Distributed Generation System

  • Kim, Kiryong;Shin, Dongsul;Lee, Jaecheol;Lee, Jong-Pil;Yoo, Dong-Wook;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1066-1073
    • /
    • 2015
  • This paper proposes a control strategy based on the frequency detection method, comprising a current control and a feed-forward voltage control loop, is proposed for grid-interactive power conditioning systems (PCS). For continuous provision of power to critical loads, PCS should be able to check grid outages instantaneously. Hence, proposed in the present paper are a frequency detection method for detecting abnormal grid conditions and a controller, which consists of a current controller and a feedforward voltage controller, for different operation modes. The frequency detection method can detect abnormal grid conditions accurately and quickly. The controller which has current and voltage control loops rapidly helps in load voltage regulation when grid fault occurs by changing reference and control modes. The proposed seamless transfer control strategy is confirmed by experimental results.

Design of a Hybrid Controller to Eliminate the Force Ripple in the Linear Motor (선형 모터에서 힘리플 제거를 위한 Hybrid 제어기의 설계)

  • Kim, Kyong-Chon;Kim, Jung-Jae;Choi, Young-Man;Gweon, Dae-Gab
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • The proposed hybrid controller consists of PID controller, feedforward controller and RLSE (Recursive Least Square Estimating) adaptive controller to compensate the force ripple that is periodic function of position in a linear motor. The modeling of force ripple is divided into the current-dependent and current-independent components. The current independent components never change as the current into the linear motor changes. On the other hand, the current-dependent components change as current varies when the velocity and load of the linear motor change. The proposed controller can compensate both force ripples. The feedforward controller compensates the current-independent components and the RLSE adaptive controller compensates the current-dependents components. We verified the performance of the controller by simulation and experiments.

  • PDF

Control of DC-side Voltage Unbalance among Phases in Multi-level H-Bridge STATCOM with Unbalanced Load (불평형부하를 가지는 다단 H-bridge STATCOM에서 상간 직류전압 불평형의 제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.332-341
    • /
    • 2014
  • A cascaded H-bridge multi-level STATCOM(STATic synchronous COMpensator), which is composed of many cell inverters with independent dc-sources, generates inevitably dc-side voltage unbalance among phases when it compensates unbalanced load. It comes from the difference of flowing active power in each phase when this compensator makes negative-sequence current to eliminate the unbalance of source-side current. However, this unbalance can be controlled by injecting zero-sequence current which is decoupled with grid currents, so the compensator can work well during this balancing process. Both a feedback control algorithm, which produces zero-sequence current proportional to dc-side voltage unbalance within each phase, and a feedforward control algorithm, which makes zero-sequence current directly from the compensator's negative-sequence current, were proposed. The dc-side voltage of each phase can be controlled stably by these proposed algorithms in both steady-state and transient, so the compensator can have fast response to satisfy control performance under rapid changing load. These balancing controllers were implemented and verified via simulation and experiment.

A study on the precision control of DC motor driving system using current-controlled feedforward compensation & optimal output feedback (전류제어형 입력보상 및 최적 출력제어를 적용한 직류전동기 구동시스템의 정밀 제어 방법에 관한 연구)

  • 고정호;손승걸;안태영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.582-587
    • /
    • 1987
  • In this paper, a controller design method for the DC motor driving system is described emphasizing the specified degree of accuracy undergoing large time varying disturbances, coulomb friction and arm-load resonance. A feedforward compensation technique using the current controller is proposed, and resulting in the performance improvement as well as the implementational simplicity. A time-weighted quadratic performance index is used in the optimization of the controller, which is a salient way of obtaining better closed-loop performance in a simple manner. Computer simulations are also given to show the usefulness of the proposed techniques.

  • PDF

Robust Speed Control of Induction Motor Using Load Torque Observer (부하변동에 강인한 유도전동기 속도제어)

  • Park, Rae-Kwan;Hyun, Dong-Scok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.686-688
    • /
    • 1993
  • This paper proposes a robust speed control algorithm of Induction Motor. The main idea of this paper is to compensate the torque component of motor current with load torque observer and feedforward control. The speed response of the conventional PI controller is affected by variation of system parameters. However the proposed system has robust characteristics against the variation of system parameters. The simulation results and experiment prove the validity of proposed algorithm.

  • PDF

Dynamic Characteristics Improvement of Three-phase PWM Converter for Arc Welding Machine Using Feedforward Compensator (전향보상기를 이용한 아크용접기용 3상 PWM 컨버터와 동특성 향상)

  • 구영모;최해용;목형수;최규하;김규식;원충연
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.419-426
    • /
    • 2000
  • Generally diode rectifier has been used as Preregulator of arc- welding machine. Its defect is the generation of high current harmonics which result In utility pollution. In this parer, using the three-phase PWM converter, the input performance of arc-welding machine is improved by increasing the input power factor. When the diode rectifier in the arc-welding machine is replaced with three-phase PWM converter, PWM converter should control DC voltage of the output side. If PI controller is used for the output DC voltage regulator, the output DC voltage has high ripple voltage due to the instantaneous load variation in the arc-welding machine. In this paper, the feedforward compensator has been introduced to reduce the DC voltage ripple. It lessens the influence of load current which is the disturbance of the output DC voltage regulator. Theoretical prediction of this analysis has been verified by comparing with experimental data

  • PDF

Proportional Resonant Feedforward Contrl Algorithm for Speed Ripple Reduction of 3-phase SPMSM (3상 영구자석 동기전동기의 속도 맥동 저감을 위한 비례공진 전향보상 제어 알고리즘)

  • Lee, Seon-Yeong;Hwang, Seon-Hwan;Kim, Gyung-Yub;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1104-1108
    • /
    • 2020
  • This paper propose a variable proportional resonant feedforward algorithm for reducing the speed ripple of a three-phase permanent magnet synchronous motor. In general, the torque ripples can be generated by electrical pulsation due to current measurement errors and dead time and mechanical pulsation because of rotor eccentricity and eccentric load. These torque pulsations can cause speed pulsations of the motor and degrade the operating performance of the motor drive system. Therefore, in this paper, the factors of the speed ripple is analyzed and an algorithm to reduce the speed ripple is proposed. The proposed algorithm applied a variable proportional resonant controller in order to reduce the specific operating frequency included in the speed pulsation, and utilized a feedforward compensation controller structure to perform the compensation operation. The proposed algorithm is verified through various experiments.

A Disturbance Observer-Based Load Current Estimation Method for Ups Inverter Applications (인버터응용을 위한 외란관측기에 의한 부하전류추정 방법)

  • Jang, Jae-Young;Lee, Kyo-Beum;Song, Joong-Ho;Choy, Ick;Yoo, Ji-Yoon;Choi, Ju-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.116-124
    • /
    • 2002
  • Design and analysis of disturbance observer-based deadbeat control fur single-phase inverter applications are comprehensively presented in this paper. Load current can be estimated by disturbance observer, which is basically structured with the first order equation in this case and is regarded as a relatively simple method in comparison with conventional full-order Luenberger observer. Also, an inherent one-step delay problem appeared in the deadbeat control method is overcome by a simple prediction technique proposed. Output voltage dip is reduced by the feedforward control with the change rate of the estimated load current involved in the deadbeat current control loop. The proposed algorithms are verified by the respective simulation and experiment results.

Rapid response control A Utility Interactive Photovoltaic Generation System (계통연계형 태양광발전 시스템의 속응성 제어)

  • Chung, Choon-Byeong;Jeon, Kee-Young;Lee, Sang-Hyun;Han, Kyung-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.279-285
    • /
    • 2007
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

Design of the Single-loop Voltage Controller for Arbitrary Waveform Generator (임의 파형 발생기를 위한 단일 루프 전압 제어기 설계)

  • Kim, Hyeon-Sik;Chee, Seung-Jun;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • This study presents a design method for a single-loop voltage controller that is suitable for an arbitrary waveform generator (AWG). The voltage control algorithm of AWG should ensure high dynamic performance and should attain sufficient robustness to disturbances such as inverter nonlinearity, sensor noise, and load current. By analyzing the power circuit of AWG, control limitation and control target are presented to improve the dynamic performance of AWG. The proposed voltage control algorithm is composed of a single-loop output voltage control, an inverter current feedback term to improve transient response, and a load current feedforward term to prevent voltage distortion. The guideline for setting control gain is presented based on output filter parameters and digital time delay. The performance of the proposed algorithm is proven by experimental results through comparison with the conventional algorithm.