• Title/Summary/Keyword: Load control

Search Result 6,481, Processing Time 0.03 seconds

An New Load Allocation Algorithms of Direct Load Control (직접부하제어 시스템의 새로운 부하 배분 알고리즘)

  • Kim, Jeong-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.407-410
    • /
    • 2010
  • This paper presents an advanced load allocation algorithm in Direct Load Control(DLC) system. It is important to aggregate a various demand side resource which is surely controllable at the peak power time for a successful DLC system. Previous load allocation algorithm appropriate for DLC system is based on interchanged information, but, this algorithm can not derive optimal solutions. In this paper, we develop the optimal algorithm and the new load allocation algorithm in polynomial time. The simulation results show that the proposed heuristic algorithm for DLC system is very effective.

A Configuration of DLC(Direct Load Control) Using Internet Communication and Load Control Method (인터넷을 이용한 DLC(Direct Load Control)의 구성 및 부하제어기법)

  • Lee, Jae-Kyung;Kim, In-Soo;Kim, Hyeong-Jung;Lee, Seoung-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.60-64
    • /
    • 2001
  • Recent recovery of the Korean economy drives a rapid increase in utility consumption and requires more stable utility supply and maintenance. However, power location security hardship, reinforcement of international environmental regulation and a huge cost of power plant construction have increased the burden laid on the stable supply. In addition, an efficient and flexible load management is required more than any era since an increment of the rate of increase in cooling load is expected. Therefore, according as the necessity of direct load control for cooling load during the summer in Korea was on the rise, direct load control systems by Internet communication method are constructed at five commercial buildings. Based on practical load control, this study proposes various application modes and communication methods prior to extension diffusion of direct load control hereafter.

  • PDF

Design of the Reconfigurable Load Distribution Control Allocator

  • Yang, Inseok;Kang, Myungsoo;Sung, Jaemin;Kim, Chong-Sup;Cho, Inje
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • This paper proposes the load distribution control allocation technique. The proposed method is designed by combining a conventional control allocation method with load distribution ability in order to reduce the stress acting on ailerons. By designing the weighting matrix as a function of the load distribution rule, the optimal deflection angles of each surface to satisfy both control goal and load distribution can be achieved. Moreover, rule based fault-tolerant control technique is also proposed. The rules are generated by considering both dominant control surfaces and the ratio of load distribution among surfaces. The performance of the proposed method is evaluated through numerical simulations.

Vehicle-Driving-Load-Adaptive Control of Intelligent Vehicle (차량 주행부하 추정기법을 이용한 지능화 차량의 적응제어)

  • 이세진;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.115-121
    • /
    • 2001
  • A driving load estimation method for intelligent cruise control(ICC) vehicles has been proposed in this paper. Vehicle driving load is one of the most important factors of perturbations in vehicle control and can affect the control performance critically. The effect of the control with driving load estimation on vehicle-to-vehicle distance control has been presented and investigated via computer simulations and vehicle tests. The results show that vehicle-driving-load-adaptive control can provide an ICC system with a good acceleration tracking performance. In addition, the results show that driving load estimation can compensate not only the variation of driving load but also the modeling errors.

  • PDF

The development and implementation of airconditioner control system for peak load clipping (하계 피크전력 감소를 위한 냉방기제어시스템 개발 및 적용)

  • 문홍석;조선구;이원빈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.783-787
    • /
    • 1996
  • The rapid growth of air conditioning load has become a main reason of peak load increase in summer. In connection with this, we surveyed the load management projects of utilities world wide and their detailed activities. This study is to develop a remote load control system using computer and radio communications. We finished the field-test of this system on August 1995 in Seoul area. During the field-test, the remote load control of air conditioners was proved to be well-timed. Two control modes, group control and all control, are available for the user to select. The transmission reliability of the load control signal was very good and the functions of system hardware as well as the software were excellent. So we confirmed the applicability of the load control system including the pager communication network. In this paper, detailed information on the system functions and experimental results are described.

  • PDF

Vehicle-Driving-Load-Adaptive Control of Intelligent Vehicle (차량 주행부하 추정기법을 이용한 지능화 차량의 적응제어)

  • Lee, Se-Jin;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.653-658
    • /
    • 2000
  • A driving load estimation method for intelligent cruise control(ICC) vehicles has been proposed in this paper. The driving load is one of the most important factors of perturbations in vehicle control and can affect the control performance critically. The Effect of the control with driving load estimation on vehicle-to-vehicle distance control has been presented and investigated via computer simulations and vehicle tests. The results show that the control with driving load estimation can provide ICC system with a good acceleration tracking performance. In addition, the results show that driving load estimation can compensate not only variation of driving load but also the modeling errors.

  • PDF

Current Controlled PWN Inverter Using the Real-time Digital Feedback Control (실시간 디지털 궤환 제어(Deadbeat 제어)에 의한 전류 제어형 PWM 인버터에 관한 연구)

  • Lee, Jeong-Uk;Yoo, Ji-Yoon;Ahn, Ho-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.259-267
    • /
    • 1994
  • This paper describes a current control of a single-phase PWM inverter. The proposed PWM inverter utilizes the instantaneous control method which is based on the real-time digital feedback control and the microprocessor-based deadbeat control. The deadbeat current controller is proposed to control the output current regardless of load component variations by the same method as voltage control. That is, in current control, with a very short sampling time and the successive feedback of the output current, the load current is mainly effected by the magnitude of load impedance rather than load component, the load current is mainly effected by the magnitude of load impedance rather than load component. Therefore, by treating the load as an impedance, the system's order is reduced and the instantaneous current control using the proposed deadeat controller is simplified.

Development of a Depth and Working Load Control System for Tractor Using a Proportional Valve (비례밸브를 이용한 트랙터 경심 및 부하제어시스템 개발)

  • Lee, S.S.;Lee, J.Y.;Mun, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.1 s.114
    • /
    • pp.16-23
    • /
    • 2006
  • Depth and working load control is one of the most important technique in control system for tractor rotary implement automation. Keeping the depth consistent is critical to bring along crops and to improve the efficiency and quality of the following operations. Keeping the load of engine consistent is an essential factor for the efficiency of operation and engine protection of tractor. In this study we investigated the possibility of application of depth and working load control system for tractor using a proportional valve through field tests. Depth control was implemented by the ascent and descent of 3 point linkage for the change of setting depth. There were 4 mm and 5.2 mm control deviations for setting depths of 50mm and 100mm, respectively. Load control was operated appropriately by the ascent and of descent of 3 point link for the change of setting working load. The standard deviations between setting load and engine load were 171 rpm at 1.3 km/h and 164 rpm at 2.3 km/h tractor travel velocity. The results of experiment showed that the characteristics of response was sufficient to be used as the implement depth and working load control system for tractor using proportional valve.

A Comparison of Operating Characteristics for Industrial Water Cooler with Variation of Control Methods (제어방식에 따른 산업용 수냉각기의 운전 특성 비교)

  • Baek, Seung-Moon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.99-105
    • /
    • 2014
  • This paper presents a comparison of operating characteristics for industrial water cooler with variation control methods. The performance analysis regarding the characteristics of condensation capacity, evaporation capacity, compressor load, COP of an on-off type cooler, a hot gas-bypass control type cooler and an inverter control type cooler with respect to the system load is reviewed, respectively. The primary results are as following: the variation of required compressor load of an on-off type cooler with respect to load is 5%, that of hot gas-bypass type is 18% and 66% for an inverter control type cooler. As the result shows, an inverter control type yields relatively huge difference of required compressor load compared to other types of control system. In terms of partial load, COP of an inverter control type cooler presents the highest value, and is considered as the optimized type for the used of the system involving frequent partial load.

An Application of Direct Load Control Using Control Logic Based On Load Properties (부하특성별 제어로직을 적용한 직접 부하제어 시스템 활용)

  • Doo, Seog-Bae;Kim, Jeoung-Uk;Kim, Hyeong-Jung;Kim, Hoi-Cheol;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2668-2670
    • /
    • 2004
  • This paper presents an advanced load control method in Direct Load Control(DLC) system. It is important to aggregate a various demand side resource which is surely controllable at the peak power time for a successful DLC system. Because the DLC system use simple On/Off control that may cause a harmful effect on a plant to reduce a peak power load, there are some restriction on deriving a voluntary participation of demand side resource. So it needs a new approach to direct load control method, and this paper describes an advanced load control method using control logic which is based on load properties. This method is easy to take account of a various characteristic of load, it can be use as a dynamic control logic which is good for adaptive control. The suggested control logic method is verified by modeling a control logic for a turbo refrigerator which affects on peak power in summer season.

  • PDF