• Title/Summary/Keyword: Load change reaction

Search Result 42, Processing Time 0.017 seconds

A Study on Securing safety through Behavior Analysis of Earth Retaining Wall (흙막이 가시설의 거동 분석을 통한 안정성 확보 방안에 관한 연구)

  • Kim, Kwang-Leyol;Kim, You-Seong;Kim, Seong-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.11-19
    • /
    • 2013
  • Recently despite the development of analysis program and construction technologies, collapse at the many earth retaining wall construction site of the structure due to the economic and human damage has occurred. The results of geothechnical investigation studies field, it was found to differ from the results of the original design. There may be errors parameters calculated from the results of ground investigation in such a case. And it can be estimated that it is irrational to behavior analysis of the earth retaining wall were analyzed by utilizing the parameters. And in this study, parameters that affect the earth retaining wall the correlations were analyzed using elasto-plastic method. Analysis method was changed various parameters (cohesion, subgrade reaction coefficient, load condition) applied to the elasto-plastic method. And due to a change in the behavior of earth retaining wall materials were analyzed. As a result, the cohesion greatly affects the behavior of earth retaining wall materials in various parameters. For this reason, the results of the geothechnical investigation, confirmation of the actual ground is very important in the design of the earth retaining wall. And, calculating accurate and reasonable of the cohesion of the various parameters is very important.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.