• Title/Summary/Keyword: Load carrying

Search Result 1,246, Processing Time 0.026 seconds

An Analytical Study on the Optimum Application of Diaphragm in Circular Steel Piers (원형강교각의 다이아프램 최적 적용에 관한 해석적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.91-96
    • /
    • 2007
  • To improve the land use of urban, Construction of the circular steel column is required recently. The circular steel columns have a advantage for improving a load carrying capacity as wall as reducing a effective section area. However, the circular steel columns under service load, such as earthquake, shows a tendency to cause local buckling and large deformation. To prevent these phenomena, use of diaphragm is considered. It is reported that longitudinal stiffeners has a effect on improving a buckling and fatigue performance of steel structures. The research of effect on diaphragm is not sufficient. Under monotonic and cyclic loadings diaphragm make a important role to prevent local buckling and deformation of used steel structures. Therefore, influence of diaphragm on performance of used steel structures is investigated. In this study, the influence of diaphragm on seismic and deformation performance of circular steel piers was investigated by using elastic-plastic finite element analysis considered geometrical and material non-linearity. The seismic performance of circular steel columns was evaluated for analytical parameter of manufactured part. The seismic performance of circular steel columns was clarified by comparing an energy dissipation of circular steel piers.

  • PDF

Development of Impact Factor Response Spectrum with Tri-Axle Moving Loads and Investigation of Response Factor of Middle-Small Size-RC Slab Aged Bridges (3축 이동하중을 고려한 충격계수 응답스펙트럼 개발 및 중소규모 RC 슬래브 노후교량 응답계수 분석)

  • Kim, Taehyeon;Hong, Sanghyun;Park, Kyung-Hoon;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.67-74
    • /
    • 2019
  • In this paper the response factor is investigated for middle and small size-RC slab aged bridges. The response factor consists of static and dynamic response factors and is a main parameter in the frequency based-bridge load carrying capacity prediction model. Static and dynamic response factors are determined based on the frequency variation and the impact factor variation respectively between current and previous (or design) states of bridges. Here, the impact factor variation is figured out using the impact factor response spectrum which provides the impact factor according to the natural frequency of bridges. In this study, four actual RC slab bridges aged over 30 years after construction are considered and their span length is 12m. The dynamic loading test in field using a dump truck and eigenvalue analysis with FE models are conducted to identify the current and previous (or design) state-natural frequencies of the bridges, respectively. For more realistic considerations in the moving loading situation, the impact factor response spectrum is developed based on tri-axle moving loads representing the dump truck load distribution and various supporting conditions such as simply supported and both ends fixed conditions. From the results, the response factor is widely ranged from 0.21to 0.91, showing that the static response factor contributes significantly on the results while the dynamic response factor has a small effect on the result. Compared to the results obtained from the impact factor response spectrum based on the single axle-simply supported condition, the maximum percentage difference of the response factors is below 3.2% only.

Connection Performance of Steel Moment Frame with Out-of-Plane Beam Skew (면외방향 어긋난 보를 갖는 철골모멘트골조의 접합부 성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.84-91
    • /
    • 2022
  • This study investigated the behavior of out-of-plane skewed moment connections that were designed as IMFs, as per the Korean standards. A total of 14 finite element models were constructed with the consideration of two types (single- and double-sided connections) and four levels of skew angle (0°, 10°, 20°, and 30°). The results indicated that the skewed connections considered in this study met the acceptance criteria for IMFs given by the codes. However, the load-carrying capacities of skewed connections were decreased as the skew angle increased. For the connection with a skew angle of 30°, the peak load was noted to be 13% less and the energy dissipation capacity could be 26% less than that of non-skewed connection. In addition, because of the skewed nature, the stress distribution in the skewed beam flange near the connection was asymmetric and the stresses were concentrated on the beam inner flange. Column twisting induced by the skewed configuration was very small and negligible in the beam and column combination considered in this study.

A Numerical Study on the Effect of Steel Casing on Bearing Capacity of Drilled Shafts for Marine Bridges (수치해석을 이용한 국내 해상교량 현장타설말뚝의 강관지지효과)

  • Lee, Juhyung;Shin, Hyu-Soung;Park, Minkyung;Park, Jae Hyun;Kwak, Kiseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.149-158
    • /
    • 2008
  • This study is concerned with the characteristics of the behavior of drilled shafts with steel casing, a material that is used for large bridge foundations in Korea, and especially for weak submerged ground conditions. The effect of steel casing on bearing capacity of drilled shafts was also verified in this study. Three large drilled shafts with 1.8, 2.4, 3.0m diameter respectively were selected, and 3-D finite element analysis has been undertaken on the following three models: 1) drilled shafts without steel casing, 2) drilled shafts with steel casing, 3) steel-concrete composite drilled shafts. Interface element between concrete core and steel casing was taken into account, and ground conditions and load combinations were applied which had been considered in the fields. Detailed characteristics of the stress and displacement distributions were evaluated to understand the characteristics of the behavior of the drilled shafts. Based on the study performed, the steel casing used as load-carrying materials in the drilled shafts can reduce the horizontal and vertical displacement of drilled shafts by 32~37% and 15~19% respectively compared with drilled shafts without steel casing.

A Fundamental Study on Evaluation of Web Crippling Strength of Corroded H-Beams (부식 H형 강재의 복부좌굴강도 추정에 관한 기초적 연구)

  • Kim, In-Tae;Shin, Chang-Hee;Cheung, Ji-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.421-433
    • /
    • 2010
  • The most typical deterioration of steel structures is corrosion damage. However, a method to evaluate residual load-carrying capacity of corroded steel structures is not yet established. It is difficult to check current serviceability and safety of the structures. In this study, compressive tests and finite element analyses were conducted on H-beams with corroded web. Then, the effect of corrosion damage on web crippling strength and evaluation methods of the web crippling strength are studied. Based on the tests, 4 H-beam specimens used in a subway construction site and 9 H-beam specimens with different web-thickness and damaged-height underwent compression-tests. To consider loading and supporting areas in the site, compressive loading was applied in the entire region of the upper and bottom flange in 5 H-beam specimens and applied partially on the regions of the upper and bottom flange in 8 specimens. The finite element analysis of 38 parametric model specimens simulating different corrosion damages was also carried out. From experimental and analytical results, the relationships between corrosion damages in the web and residual web crippling strength are presented. Factors web crippling strength was reduced are formulated by using residual average thickness and the standard deviation of the corroded web thickness. Also, a simple evaluation method of residual web crippling strength was proposed.

R&D Trends and Technology Development Plan on Portable Fuel Cell for Future Soldier System (미래병사체계를 위한 휴대형 연료전지 기술개발 동향 및 발전방안)

  • Lee, Yu Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.618-624
    • /
    • 2020
  • A portable power supply system for soldiers must be able to supply electric energy corresponding to the power consumption of combat support troops, and have a carrying load in a range that does not impair the combatant's ability to execute operations. In particular, as the total required power of combat equipment increases with the advances in the future soldier system, a portable, lightweight power supply system with high efficiency is essential. A fuel cell has a high energy-to-weight density compared to lithium batteries, which are used mainly as a military power source system. Therefore, it is capable of miniaturization and lightweight, making active R&D to a portable power supply system. In this paper, the characteristics of the fuel cell applied as a portable power supply system, and the R&D trends of domestic and foreign military portable fuel cell systems were investigated. The current status of domestic technology compared to the level of foreign development was analyzed. In addition, future technology development plans are presented based on the consideration factors when developing a portable fuel cell (power supply stability, portability, and cost reduction) so that it can be used when establishing a plan on the development of a portable fuel cell system for the future soldier system.

Stress-Strain Responses of Concrete Confined by FRP Composites (FRP 합성재료에 의하여 구속된 콘크리트의 응력-변형률 응답 예측)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.803-810
    • /
    • 2007
  • An analytical method capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (fiber reinforced polymers) composites in a rational manner is presented. Its underlying idea is that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure, and can be utilized to estimate the load-carrying capacity of concrete by considering the corresponding accumulated damage. Following from this, an elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. The proposed method enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods. Several existing analytical methods that can predict the overall response were also examined and discussed, particularly focusing on the way of considering the volumetric expansion. The results predicted by the proposed and Samaan's bilinear equation models correlated with observed results with a reasonable degree, however it can be judged that the latter is not capable of predicting the response of lateral strains correctly due to incorporating the initial Poisson's ratio and the final converged dilation rate only. Further, the proposed method seems to have greater benefits in other applications by the use of the fundamental principles of mechanics.

Influence of Number of Twist on Tensile Behavior of High Performance Fiber Reinforced Cementitious Composites with Twisted Steel Fibers (비틀림 강섬유의 비틀림 횟수가 고성능 섬유보강 시멘트 복합재료의 인장거동에 미치는 영향)

  • Kim, Dong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.575-583
    • /
    • 2010
  • This research investigated the influence of the number of twist on single fiber pullout behavior of Twisted steel (T-) fiber and tensile behavior of high performance cementitious composites reinforced with the (T-) fibers (HPFRCC). Micromechanical pullout model for T- fibers has been applied to analytically investigate the influence of various fiber parameters including the number of twist on single fiber pullout behavior; and, to optimize the number of twist to generate larger pullout energy during fiber pullout without fiber breakage. In addition, an experimental program including single fiber pullout and tensile tests has been performed to investigate the influence of twist ratio experimentally. Two types of T- fiber with different twisted ratios, T(L)- fiber (6ribs/30 mm) and T(H)- fiber (18ribs/30 mm), were tested. T(L)- fiber produced higher equivalent bond strength (larger pullout energy) although T(H)- fiber produced higher pullout stress during pullout since T(H)- fiber showed fiber breakage during pullout. Tensile test results confirmed that T(L)- fiber in high strength mortar generates better tensile performance of HPFRCC, e.g., load carrying capacity, strain capacity and multiple micro-cracking behavior.

Behavior Analysis of RMPM Applied Steel Frame Structures (반력모멘트를 이용한 라멘형 철골구조물의 거동분석)

  • Ahn, Jin Hee;Kim, Jun Hwan;Kim, Tae Yeon;Kim, Sang Hyo;Lee, Sang Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.611-620
    • /
    • 2007
  • The beam-column connection is the critical design section of general steel frame structures owing to the behavioral characteristics of the structural system. As most members of a frame structure are composed of rolled section beams, the cross-section of the beam members is governed by the negative bending moment near beam-column connections. Such a design concept leaves a redundant load-carrying capacity at the positive bending regions of the beam members leading to design inefficiency. Therefore, it is of utmost importance to redistribute the beam end moments and reduce the stresses at the beam-column connections for a more efficient design of steel frame structures. In this study, reaction-moment prestressing method (RMPM) was proposed for the innovative design and construction of steel frame structures. The RMPM is a prestressing method utilizing the elastic bending deformation of a beam member induced by temporary prestressing for the distribution of a relatively large bending moment to other sections for the efficient use of the beam section. By the application of the RMPM, the negative bending moment at the beam-column connections can be significantly reduced, ultimately leading to possible use of smaller beam sections. Through a series of model tests and numerical analyses of steel frame structures, the moment distributing effect and feasibility of the RMPM was verified.

Dynamic-size Multi-hop Clustering Mechanism based on the Distance in Sensor Networks (센서 네트워크에서의 거리에 따른 동적 크기 다중홉 클러스터링 방법)

  • Ahn, Sang-Hyun;Lim, Yu-Jin
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.519-524
    • /
    • 2007
  • One of the most important issues on the sensor network with resource limited sensor nodes is prolonging the network lifetime by effectively utilizing the limited node energy. The most representative mechanism to achieve a long lived sensor network is the clustering mechanism which can be further classified into the single hop mode and the multi hop mode. The single hop mode requires that all sensor nodes in a cluster communicate directly with the cluster head(CH) via single hop md, in the multi hop mode, sensor nodes communicate with the CH with the help of other Intermediate nodes. One of the most critical factors that impact on the performance of the existing multi hop clustering mechanism is the cluster size and, without the assumption on the uniform node distribution, finding out the best cluster size is intractable. Since sensor nodes in a real sensor network are distributed non uniformly, the fixed size mechanism may not work best for real sensor networks. Therefore, in this paper, we propose a new dynamic size multi hop clustering mechanism in which the cluster size is determined according to the distance from the sink to relieve the traffic passing through the CHs near the sink. We show that our proposed scheme outperforms the existing fixed size clustering mechanisms by carrying out numerical analysis and simulations.