• 제목/요약/키워드: Load bearing behavior

검색결과 486건 처리시간 0.025초

오스트버그식 재하시험을 이용한 대구경 현장타설말뚝의 축하중전이거동 (Axial Load Transfer Behavior of a Large Diameter Drilled Shaft by Osterberg Type Load Test)

  • 임태경;정창규;정성민;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.447-454
    • /
    • 2003
  • In this test, two separated oil jacks were placed at bottom of drilled shaft(D = 1,500mm, L = 33m), and maximum upward and downward load of 1,250 tonf was applied. Also, the deformable rod sensors were placed on each level, and axial strains at each level were measured. Because the side skin friction and the end bearing could be measured separately in the Osterberg type pile load test, this test might be more economical and more applicable than a conventional static pile load test. Thus, if this Osterberg type pile load test could be established during design stage, construction cost might be reduced and its application for large diameter pile could be enhance greatly.

  • PDF

면진장치 장착 스카이 브릿지의 사용성 평가 (Serviceability Evaluation of Sky Bridge With Isolation Device)

  • 김기철;김현수;김수근
    • 한국공간구조학회논문집
    • /
    • 제17권2호
    • /
    • pp.71-77
    • /
    • 2017
  • In this study, the boundary non-linear analysis of the sky bridge subjected to walking load and running load is performed. The sky bridge is installed in the mid-story between two buildings and the walking load and running load induced by pedestrians are measured by load cell. LRB is modeled as a non-linear hysteresis model to accurately represent the behavior of LRB. For the serviceability evaluation of sky bridge, the acceleration responses of sky bridge are analyzed based on ISO 2631-2 and the velocity response are analyzed based on standards Bachmann &Amann. In serviceability evaluation of this sky bridge, the pedestrian can not perceive the vibration except for resonance running loads consequently. Therefore, it is concluded that this sky bridge haven't problem in the serviceability.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Crack effect on the elastic buckling behavior of axially and eccentrically loaded columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.169-184
    • /
    • 2006
  • A close form solution of the maximum deflection for cracked columns with rectangular cross-sections was developed and thus the elastic buckling behavior and ultimate bearing capacity were studied analytically. First, taking into account the effect of the crack in the potential energy of elastic systems, a trigonometric series solution for the elastic deflection equation of an arbitrary crack position was derived by use of the Rayleigh-Ritz energy method and an analytical expression of the maximum deflection was obtained. By comparison with the rotational spring model (Okamura et al. 1969) and the equivalent stiffness method (Sinha et al. 2002), the advantages of the present solution are that there are few assumed conditions and the effect of axial compression on crack closure was considered. Second, based on the above solutions, the equilibrium paths of the elastic buckling were analytically described for cracked columns subjected to both axial and eccentric compressive load. Finally, as examples, the influence of crack depth, load eccentricity and column slenderness on the elastic buckling behavior was investigated in the case of a rectangular column with a single-edge crack. The relationship of the load capacity of the column with respect to crack depth and eccentricity or slenderness was also illustrated. The analytical and numerical results from the examples show that there are three kinds of collapse mechanisms for the various states of cracking, eccentricity and slenderness. These are the bifurcation for axial compression, the limit point instability for the condition of the deeper crack and lighter eccentricity and the fracture for higher eccentricity. As a result, the conception of critical transition eccentricity $(e/h)_c$, from limit-point buckling to fracture failure, was proposed and the critical values of $(e/h)_c$ were numerically determined for various eccentricities, crack depths and slenderness.

항타말뚝과 비교한 현장타설말뚝의 지지력분석 (Analysis of the Bearing Capacity of Drilled Shafts Compared with Driven Piles)

  • 이성준;정상섬;김수일
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.75-88
    • /
    • 1997
  • 본 연구에서는 항타말뚝과 비교한 현장타설말뚝의 극한지지력을 하중전이함수를 적용하여 예측하였으며 이를 토대로 항타말뚝과 비교한 현장타설말뚝의 지지력을 현장재하시험 결과와 비교, 분석하였다. 비교, 분석은 하중전이함수들 중 응력 연화를 고려한 방법, 쌍곡선 함수법 및 탄소성 방법을 대표하는 Vijayvergiya의 방법, Castelli의 방법 및 2중 직선법을 적용하여 지반 종류에 따라 현장타설말뚝의 하중-변위관계를 산정하였다. 본 연구 결과 동일한 지반에 설치된 항타말뚝과 현장타설말뚝의 극한지지력은 총 주면마찰력의 차이로 인하여 항타말뚝이 더 큰 것으로 나타났으며 이러한 차이는 점토질 지반에서 보다는 모래질 지반에서 더 크게 나타났다. 같은 지지력을 발현하기 위해 필요한 말뚝 두부에서의 변위량은 항타말뚝보다는 현장타설말뚝에서 더 크게 나타났으며 현장타설말뚝이 극한지지력을 발현하기 위해 필요한 변위량과 이와 같은 크기의 지지력을 발현하는데 필요한 항타말뚝의 변위량과의 차이는 모래질 지반에서 가장 크게 나타났다. 현장타설말뚝과 항타말뚝의 말뚝직경과 길이의 비(LID)의 변화에 따른 극한지지력의 차이는 점토질 지반의 경우 일정한 것으로 나타났으나 모래질 지반에서는 LID의 비가 증가할수록 극한지지력의 차이가 증가하는 것으로 나타났다.

  • PDF

Dynamic behaviors of viscous damper on concrete archaized building with lintel-column joint

  • Xue, Jianyang;Dong, Jinshuang;Sui, Yan
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.409-419
    • /
    • 2017
  • In order to analyze the vibration control effect of viscous damper in the concrete archaized buildings with lintel-column joints under seismic action, 3 specimens were tested under dynamic excitation. Two specimens with viscous damper were defined as the controlled component and one specimen without viscous damper was specified as the non-controlled component. The loading process and failure patterns were obtained from the test results. The failure characteristics, skeleton curves and mechanical behavior such as the load-displacement hysteretic loops, load carrying capacity, degradation of strength and rigidity, ductility and energy dissipation of the joints were analyzed. The results indicate that the load-bearing capacity of the controlled component is significantly higher than that of the non-controlled component. The former component has an average increase of 27.4% in yield load and 22.4% in ultimate load, respectively. Meanwhile, the performance of displacement ductility and the ability of energy dissipation for the controlled component are superior to those of the non-controlled component as well. Compared with non-controlled component, equivalent viscous damping coefficients are improved by 27.3%-30.8%, the average increase is 29.0% at ultimate load for controlled component. All these results reflect that the seismic performance of the controlled component is significantly better than that of the non-controlled component. These researches are helpful for practical application of viscous damper in the concrete archaizing buildings with lintel-column joints.

지오그리드로 보강된 연약지반 위에 위치한 연속기초의 극한 지지력 (Bearing Capacity of Strip Footing on Geogrid-Reinforced Soft Ground)

  • 유충식;신승우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.169-174
    • /
    • 1994
  • This paper presents the results of a parametric study on the bearing capacity behavior of a footing located above geogrid-reinforced ground using the finite element method of analysis. A wide range of boundary conditions were analyzed, with varing geogrid design parameters such as depth of geogrid layer, length and siffness of geogrid, and number of geogrid layer, were analyzed. Based on the results of analysis, the optimum geogrid design parameters were determined, which maximize the reinforcing effect of geogrid reinforcement for a given conidition. Furthermore, the mechanistic behavior of a geogrid-reinforced ground subjected to a footing load was discussed using the results of analysis such as stress distribution, propagation of plastic yielding, displacement vector among others.

  • PDF

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.

무소음.무진동 공법을 위한 환경친화적인 스크류콘크리트말뚝의 시공방법에 따른 연직하중지지거동 분석 (An Analysis on the Vertical Load Bearing Behavior according to Construction Methods of a Environment-friendly Screw Concrete Pile for the Noise and Vibration-free Method)

  • 김동철;최용규
    • 한국지반환경공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.5-11
    • /
    • 2013
  • 국내의 소음 진동규제는 점점 더 강화되고 있어 도심지 근접시공을 위해 현재의 저소음 저진동 공법보다 더욱 환경친화적인 공법이 필요하게 되었다. 이 연구에서는 무소음 무진동 공법을 위한 스크류콘크리트말뚝공법의 특징에 대하여 설명하였으며 국내 특정 현장에서 시험시공을 실시하고 말뚝재하시험을 실시하여 시공방법에 따른 연직하중 지지능력을 연구하였다. 선행굴착방식으로 시공된 스크류콘크리트말뚝의 연직압축지지력이 선단분출형슈방식으로 시공된 스크류콘크리트말뚝의 그것보다 70% 이상 크게 나타났다.

하중분배 계수를 적용한 비충전 강합성 바닥판 활하중 모멘트 산정 (Estimation of Live Load Moment for Concrete Unfilled Steel Grid Deck Using Main Bearing Bar Distribution Factor)

  • 박영훈;김성훈
    • 대한토목학회논문집
    • /
    • 제34권6호
    • /
    • pp.1667-1676
    • /
    • 2014
  • 강합성 바닥판은 두 방향의 휨 강성이 다르기 때문에 직교이방성의 성질을 가진다. 강합성 바닥판의 휨 강성비는 활하중 모멘트에 영향을 미친다. 비충전 강합성 바닥판의 휨 강성비는 메인 베아링 바 간격과 직접적인 관계를 가지고 있어 메인 베아링 바 간격과 형상비 영향이 고려된 하중분배 계수식에 대한 연구가 필요한 것으로 판단된다. 본 연구에서는 휨 강성비를 고려하는 AASHTO LRFD Bridge Design Specification에 의한 비충전 강합성 바닥판의 활하중 모멘트를 평가하고 비충전 강합성 바닥판의 하중분배 계수식을 제안하고자 한다.