• 제목/요약/키워드: Load bearing behavior

검색결과 486건 처리시간 0.024초

RC보의 부착보강공법과 외부강선보강공법의 유효응력에 관한 연구 (A Study on the Effective Stress of RC Beams in Applying the Adhesion Reinforced and the External Post-Tensioning Method)

  • 박용걸;최정열;최준혁
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.186-194
    • /
    • 2007
  • This study was performed to compare the load-carrying capacities of the reinforced concrete structure between the carbon fiber adhesion reinforcement method and the external post-tensioning method and further estimate the effective stress of the reinforced material by analyzing the experimental reinforcing effect of each method and the behavior resulting from each method. As a result, it was found out that the effective stress of the carbon fiber reinforcement according to the carbon fiber adhesion reinforcement method had an unexpected value, and also, bearing of the stress was found to be far from sharing thereof. That is to say, while the carbon fiber was bearing the whole stress to some limits, it got to be momentarily ruptured as soon as it went beyond such limits. On the other hand, the external post-tensioning method has the advantage of inducing an initial effective stress by introducing a strain, and thus, it was found that behavior or bearing of the stress was also found to be a solid behavior of the steel wire. This method was also found to be more efficient and excellent than the carbon fiber adhesion reinforcement method in the reinforcing effect or securing the effective stress. Accordingly, we were to discuss the effective stress as comparatively examined, focusing on deriving of the more enhanced reinforcing effect on the basis of the experiment to which the field characteristic is added.

Behavior of Continuous RC Deep Beams Supporting Bearing Walls

  • Lee, Han-Seon;Ko, Dong-Woo
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.581-582
    • /
    • 2009
  • Continuous deep girders which transmit the gravity load from the upper wall to lower columns have frequently long end shear spans between the boundary of the upper wall and the face of the lower column. This paper presents the results of tests and analyses performed on three 1:2.5 scale specimens with long end shear spans, (the ratios of shear-span/height : 2.0

결속선이 R/C보의 거동에 미치는 영향에 대한 실험적 연구 (An Experimental Study on the Effect of Tie-wire on R/C Beam Behaviors)

  • 변항룡;공귀옥;김준성;이수곤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.737-742
    • /
    • 1997
  • In this paper the effect of tie wire in lap spliced bars is investigated by experiment. The variables considered in the beam behaviors are beam dimension, lapped splice length and numbers of tie wire. 3 test pieces having the same variables consist one series and a total of 6 series ar tested. The test results show the beam behavior is not affected by numbers of tie wire but by the manner of tie. It was revealed hat the load bearing capacity of the beam is increased when the tie wire is extended to top bar.

  • PDF

대형 콘크리트 패널 구조의 수직접합부 내력에 관한 고찰 (Strength of Vertical Joints in Large Concrete Panel Structures)

  • 이용재;서수연;이원호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.95-98
    • /
    • 1992
  • In large panel structures, the design of joints which interconnect panels, is important deciding the load-bearing capacity of structures. Being various factors in the design of joints, it is difficult to develop a the critical system for the structural analysis of large concrete panel structures. Therefore there is a tendency to depend on the experiment. The purpose of this paper is to investigate the strength and the mechanical behavior of vertical joints in large concrete panel structures.

  • PDF

최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가 (Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces)

  • 유승룡;김대훈
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.

굴곡형 케이블-막 지붕 시스템의 비선형 해석 (Nonlinear Analysis of Curved Cable-Membrane Roof Systems)

  • 박강근;권익노;이동우
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.

연직하중을 받는 무리말뚝의 새로운 설계 방법 (New Design Method for Pile Group under Vertical Load)

  • 이수형;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 기초기술학술발표회
    • /
    • pp.11-29
    • /
    • 2002
  • Current design of pile group is based on the estimation of the overall bearing capacity of a pile group from that of a single pile using a group efficiency. However, the behaviors of a pile group are influenced by various factors such as method of pile installation, pile-soil-pile interaction, cap-soil-pile interaction, etc. Thus it is practically impossible to take into account these factors reasonably with the only group efficiency, In this paper, a new method for the design of pile groups is proposed, where the significant factors affecting the behavior of a pile group are considered separately by adopting several efficiencies. Furthermore, in the proposed method, the load transfer characteristics of piles and the difference of pile behaviors with respect to the pile locations in group can be taken into account. The efficiencies for the method are determined using the settlement failure criterion, which is consistent with the concept of allowable settlement for structures. The efficiencies calculated from the results of existing model tests are presented, and the bearing capacity of a pile group in the other model test is calculated and compared with that from the test result, to verify the validity of the proposed method.

  • PDF

강성사면에 인접한 옹벽의 거동에 관한 연구 (Behavior of Retaining wall near Rigid slopes)

  • 유남재;이명욱;박병수
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.405-415
    • /
    • 1998
  • This thesis is an experimental and numerical research on bearing capacity acting retaining walls close to rigid slopes with stiff angles. Experiments were performed with changing the roughness of adjacent slope to the wall, its inclination, distance between wall and slope. Vertical stress and applied surcharge loads were measured by miniature earth cells and a load cel respectively. Stress distribution Vertical Settlement of surcharge load of rigid model footing were measured by LVDTs. Bearing capacities of surcharge loads were compared with theoretical estimations by using several different methods of limit equilibrium and numerical analysis. For limit equilibrium methods, the modified silo and the wedge theories, proposed by Chung sung gyo and Chung in gyo (1994) were used to analyze test results Based on those modified theories, the particular solution with the boundary condition of surcharge loads on the surface of backfill was obtained to find the stress distributions acting in the backfill and to compare with test results. From results of surcharge test with model wall being very close to the slope, analyzed results by the modified silo theory and to be in the better agreements than other methods.

  • PDF

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

Study on mechanical behaviors of loose mortise-tenon joint with neighbouring gap

  • He, Jun-xiao;Wang, Juan;Yang, Qing-shan;Han, Miao;Deng, Yang
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.509-521
    • /
    • 2021
  • The neighbouring gaps at the mortise-tenon joint in traditional timber structure, which leads to the complexity of the joint, are considered to impair the mechanical performance of the joint. In this paper, numerical simulation of loose joint was conducted to examine the deformation states, stress distributions, and bearing capacities, which was verified by full-scale test. On the basis of the experimental and numerical results, a simplified mechanics model with gaps has been proposed to present the bending capacity of the loose joint. Besides, the gap effects and parameter studies on the influences of tenon height, friction coefficient, elastic modulus and axial load were also investigated. As a result, the estimated relationship between moment and rotation angle of loose joint showed the agreement with the numerical results, demonstrating validity of the proposed model; The bending bearing capacity and rotational stiffness of loose joint had a certain drop with the increasing of gaps; and the tenon height may be the most important factor affecting the mechanical behaviors of the joint when it is subjected to repeated load; Research results can provide important references on the condition assessments of the existing mortise-tenon joint.