• Title/Summary/Keyword: Load bearing

Search Result 1,979, Processing Time 0.033 seconds

Evaluation of Friction Torque for a Turbopump Ball Bearing (터보펌프 볼 베어링의 마찰 토크 평가)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Kim, Jin-Han
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.25-33
    • /
    • 2011
  • Rolling contact ball bearings are utilized almost exclusively for liquid propellant rocket engine turbopump. Turbopump ball bearings are required to endure high speed and high load for a poor lubricated condition in cryogenic environment. To evaluate bearing heat generation performance, friction torque is investigated as a function of rotation speed, bearing load and cooling flow rate through an experimental study using water coolants. Radial and axial loads are simultaneously applied to the test bearing by gas pressurized cylinder rod. Endurance performance of bearing has been also verified under the bearing required load for operating condition during total accumulated test time 2,100 sec.

Experimental research on load-bearing capacity of cast steel joints for beam-to-column

  • Han, Qinghua;Liu, Mingjie;Lu, Yan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.67-83
    • /
    • 2015
  • The load transfer mechanism and load-bearing capacity of cast steel joints for H-shaped beam to square tube column connection are studied based on the deformation compatibility theory. Then the monotonic tensile experiments are conducted for 12 specimens about the cast steel joints for H-shaped beam to square tube column connection. The findings are that the tensile bearing capacity of the cast steel joints for beam-column connection depends on the ring of cast steel stiffener. The tensile fracture happens at the ring of the cast steel stiffener when the joint fails. The thickness of square tube column has little influence on the bearing capacity of the joint. The square tube column buckles while the joint without concrete filled, but the strength failure happens for the joint with concrete filled column. And the length of welding connection between square tube column and cast steel stiffener has little influence on the load-bearing capacity of the cast steel joint. Finally it is shown that the load-bearing capacity of the joints for H-shaped beam to concrete filled square tube column connection is larger than that of the joints for H-shaped beam to square tube column connection by 10% to 15%.

Axial Load Transfer Behavior for Driven Open-ended End bearing Steel Pipe Pile (선단지지된 항타개단강관말뚝의 축하중전이거동)

  • 임태경;정성민;정창규;최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.589-596
    • /
    • 2002
  • In this study, static pile load tests with load transfer measurement were accomplished in the field. Yield pile capacity (or ultimate pile capacity) determined by load-settlement-time relationship was determined and axial load transfer behavior was analyzed. In the test for the four test piles were behaved as end bearing pile but ratios of skin friction to total pile capacity were 27%∼33%.

  • PDF

Oil-Jet Ball 윤활시 가스터빈용 고속 Ball Bearing 윤활특성

  • 김기태;권우성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.86-93
    • /
    • 1996
  • The lubrication characteristics of high-speed ball bearings has been investigated empirically using 45mm bore split inner ring ball bearings employed in small industrial gas turbine engines with oil-jet lubrication method. For the close structural simulation, experiments carried out with bearing mounting supports of real engines, such as bearing housings and oil nozzle assemblies with squeeze film dampers. Thus the results of tests can be directly applied to the design and the development of gas turbine engines. Testing was done by varying operating speeds, axial load on bearings, and lubricant flowrates. During testing, the temperature of bearing at outer-ring face, the power consumption of the driving motor, and the rotating resistance of the bearing were measured. From this study, the representative factors for lubrication characteristics at high speed was found, and the most important one was not operating speed but axial load up to 1.95 million dmN speed and 303 kgf axial load. Furthermore, the detailed variation of the rotational resistance of the bearing could be visualized by measuring the change of the radial load under the bearing supports. The rotational resistance consists of the frictional resistance and the bearing-cavity oil resistance.

  • PDF

Study on Dynamic Characteristics of Spindle-bearing System Subjected to Radial Load (경방향 하중을 받는 스핀들 베어링 계의 동특성 연구)

  • Choi, Chun-Suk;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.740-746
    • /
    • 2013
  • Angular contact ball bearings are often adopted for a high-speed spindle owing to their durability against axial and radial loads. The dynamic characteristics of an angular contact ball bearing, however, are very complicated because they are dependent on the applied loads as well as on the system configuration. This study systematically analyzes the radial-load-dependent characteristics of spindles as well as angular contact ball bearings. Toward this end, a spindle dynamic model along with the bearing dynamics model is established. An iterative solution algorithm is implemented to resolve the statically indeterminate problem associated with spindle-bearing systems subjected to radial load. Two numerical examples are provided to investigate the spindle and bearing characteristics as a function of radial load with regard to the system configuration.

A Study on the Characteristic of the Hydrostatic Bearing in the Hydraulic Cylinder (유압실린더내 정압베어링의 특성에 관한 연구)

  • Kang, Hyung-Sun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.522-527
    • /
    • 2008
  • On designing of hydrostatic bearing, load, quantity of oil, stiffness and friction load are considered as basic characteristics. For the analysis of these basic characteristics, pressure distribution by oil film is obtained. Speed of piston, clearance, leakage of oil, eccentricity, shape and roughness of bearing affect the results which are the analysis of basic characteristics of load, quantity of oil, stiffness and friction load. The relationship among those factors are required for optimum designing of hydrostatic bearing for machining tool. Reynold's Equation is calculated through finite element method. Load, leakage of quantity and pressure distribution as variation of length, land length ratio, eccentricity and axial velocity of bearing are investigated. Then optimum design variables are obtained.

Reaction force of ship stern bearing in hull large deformation based on stochastic theory

  • Zhang, Sheng-dong;Long, Zhi-lin;Yang, Xiu-ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.723-732
    • /
    • 2020
  • A theoretical calculation model for ship stern bearings with large hull deformation is established and validated theoretically and experimentally. A hull simulation model is established to calculate hull deformations corresponding to the reaction force of stern bearings under multi-factor and multi-operating conditions. The results show that in the condition of wave load, hull deformation shows randomness; the aft stern tube bearing load obeys the Gaussian distribution and its value increases significantly compared with the load under static, and the probability of aft stern tube bearing load greater than 1 is 65.7%. The influence laws and levels between hull deformation and bearing reaction force are revealed, and suggestions for ship stern bearing specifications are proffered accordingly.

A Parametric Study on the Characteristics of the Oil-Lubricated Wave Journal Bearing

  • Suh, Hyun-Seung;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • A new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performance of a hydrodynamic journal bearing. This concept features a wave in bearing surface. Not only straight but also twisted wave journal bearings are investigated numerically. The performances of straight and twisted bearings are compared to a plain journal bearing over a wide range of eccentricity. The bearing load and stability characteristics are dependent on the geometric parameters such as the number of waves, the amplitude and the starting point of the wave relative to the applied load direction. The bearing performance is analyzed for various configurations and for both cases of smooth and wave member notation. The wave journal bearing, especially for the twisted one, offers better stability than the plain journal bearing under all eccentricity ratios and load orientation.

  • PDF

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing (스파이럴 그루브 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구)

  • 강지훈;김경웅
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.181-186
    • /
    • 2002
  • A numerical analysis is undertaken to show the influence of bearing design parameters on the load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, and the seal ratio.