• Title/Summary/Keyword: Load Prediction Model

Search Result 590, Processing Time 0.048 seconds

Analysis of roll deformation for sendzimir rolling mill (젠지미어 압연기 롤 변형해석)

  • 이영호;김종택;한석영;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1689-1699
    • /
    • 1990
  • Sendzimir rolling mill is widely used for rolling hard materials such as stainless steel due to its small work roll diameter and shape controllability using two effective actuators, AS-U-Roll crown adjustment and lst. intermediate roll shifting. However, in comparison with 4-high or 6-high mills, it is noteasy to get good strip or excellent flatness because Z-mill has small diameter of work rolls which are easily deformed by load. A new mathematical model based on the method of dividing roll and strip into multo-portions was used to develop strip profile prediction software. Using the developed software, several influencing factors related to rolled strip profile for Z-Mill were tested analytically and characterized for the effective shape control. The effects of adjusting shape control actuators of Z-Mill on strip profile were also examined and discussed in detail.

Improvement of Rolling Load Prediction with Consideration of Spread in Hot Rolling (푹 퍼짐을 고려한 열연공정 압연하중 설정정확도 개선)

  • Jeong, Jong-Yeop;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2836-2844
    • /
    • 2000
  • Thickness control of hot-rolled strips has become an important issue in recent years because of the need for improving the quality of the hot-rolled strip. In this study, a modifying method of rolling force set-up with consideration of spread was developed to improve the thickness uniformity at the finishing rolling units in hot rolling. Through the analysis of real production data it was found that the accuracy of the rolling force determined from the finishing mill set-up (FSU) model dominantly governed the thickness uniformity in rolled plates at the front. Based on this analysis , several examples were selected to calculate the spread of rolled plate using three dimensional rigid thermo-viscoplastic finite element program. FE analysis results were used to train the neural network system that can predict the spread hot-rolled plate and the rolling force was modified based on the predicted value of spread. The modified rolling forces were closer to the measured rolling force so it can be expected that the accuracy of thickness uniformity of hot-rolled plate will be improved.

Fatigue Analysis of Vehicle Chassis Component Considering Resonance Frequency (공진 주파수를 고려한 차량 섀시 부품의 피로해석)

  • Lee Sang Beom;Yim Hong Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.94-101
    • /
    • 2004
  • The purpose of this raper is to assess the benefits of frequency domain fatigue analysis and compare it with more conventional time domain techniques. The multi-body dynamic analysis, FE analysis and fatigue life prediction technique are applied for the frequency domain fatigue analysis. To obtain the dynamic load history used in the frequency domain fatigue analysis, the computer simulations running over typical road Profiles are carried out by utilizing vehicle dynamic model. The fatigue life estimation for the rear suspension system of small-sized passenger car is performed by using resonance durability analysis technique, and the estimation results are compared with the conventional quasi-static durability analysis results. For the pothole simulation, the percent changes, of the fatigue life between the two durability analysis techniques don't exceed 10%. But for the Belgian road simulation because of the resonance effect, the fatigue life using the resonance durability analysis technique are much smaller estimated than the quasi-static durability analysis results.

Behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 2: Evaluation of theoretical strength

  • Zhu, Y.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.563-580
    • /
    • 2010
  • Composite beams using bolts to attach steel plates to the side faces of existing reinforced concrete (RC) coupling beams can enhance both their strength and deformability. The behavior of those composite beams differs substantially from the behavior of typical composite beams made up of steel beams and concrete slabs. The former are subjected to longitudinal, vertical and rotational slips, while the latter only involve longitudinal slip. In this study, a mixed analysis method was adopted to develop the fundamental equations for accurate prediction of the load-carrying capacity of steel plate strengthened RC coupling beams. Then, a rigid plastic analysis technique was used to cope with the full composite effect of the bolt group connections. Two theoretical models for the determination of the strength of medium-length plate strengthened coupling beams based on mixed analysis and rigid plastic methods are presented. The strength of the strengthened coupling beams is derived. The vertical and longitudinal slips of the steel plates and the shear strength of the anchor-bolt connection group is considered. The theoretical models are validated by the available experimental results presented in a companion paper. The strength of the specimens predicted from the mixed analysis model is found to be in good agreement with that from the experimental results.

Estimation of Surface Wind Speed on the Strong Wind Damage by Typhoon (태풍으로 인한 강풍 피해 추정을 위한 지상풍 산정 연구(Ⅰ))

  • Park, Jong-Kil;Jung, Woo-Sik;Choi, Hyo-Jin
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.85-88
    • /
    • 2008
  • Damage from typhoon disaster can be mitigated by grasping and dealing with the damage promptly for the regions in typhoon track. What is this work, a technique to analyzed dangerousness of typhoon should be presupposed. This study estimated 10m level wind speed using 700hPa wind by typhoon, referring to GPS dropwindsonde study of Franklin(2003). For 700hPa wind, 30km resolution data of Regional Data Assimilation Prediction System(RDAPS) were used. For roughness length in estimating wind of 10m level, landuse data of USGS are employed. For 10m level wind speed of Typhoon Rusa in 2002, we sampled AWS point of $7.4\sim30km$ distant from typhoon center and compare them with observational data. The results show that the 10m level wind speed is the estimation of maximum wind speed which can appear in surface by typhoon and it cannot be compared with general hourly observational data. Wind load on domestic buildings relies on probability distributions of extreme wind speed. Hence, calculated 10m level wind speed is useful for estimating the damage structure from typhoon.

  • PDF

Stress Analysis and Residual Life Assessment of T-piece of High Temperature Pipe (고온배관 T-부의 응력해석 및 잔여수명평가)

  • Kwon, Yang-Mi;Ma, Young-Wha;Cho, Seong-Wook;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.34-41
    • /
    • 2005
  • For assessing residual lift of the steam pipe in fossil power plants, inspections and analysis are usually focused on the critical locations such as butt welds, elbows, Y-piece and T-piece of the steam pipes. In predicting the residual life of T-piece, determination of local stress near welds considering system load as well as internal pressure is not a simple problem. In this study, stress analysis of a T-piece pipe was conducted using a three-dimensional model which represents the T-piece of a domestic fossil power station. Elastic and elastic-creep analysis showed the maximum stress level and its location. Residual creep rupture life was also calculated using the stress analysis results. It was argued that the calculated life is reasonably same as the measured one. The stress analysis results also support life prediction methodology based on in-field replication technique.

Investigation of major parameters affecting instablility of steel beams with RBS moment connections

  • Tabar, A.Moslehi;Deylami, A.
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.203-219
    • /
    • 2006
  • One of the most promising ways through which a steel moment frame may attain high energy dissipating capability is to trim off a portion of the beam flanges near the column face. This type of moment connection, known as Reduced Beam Section (RBS) connection, has notable superiority in comparison with other moment connection types. As the result of the advantages of RBS moment connection, it has widely being used in practice. In spite of the good hysteretic behaviour, an RBS beam suffers from an undesirable drawback, which is local and lateral instability of the beam. The instability in the RBS beam reduces beam load-carrying capacity. This paper aims to investigate key issues influencing cyclic behaviour of RBS beams. To this end, a numerical analysis was conducted on a series of steel subassemblies with various geometric properties. The obtained results together with the existing experimental data are used to study the instability of RBS beams. A new slenderness concept is presented to control an RBS beam for combined local and lateral instability. This concept is in good agreement with the numerical and experimental results. Finally, a model is developed for the prediction of the magnitude of moment degradation owing to the instability of an RBS beam.

Shear strength analysis and prediction of reinforced concrete transfer beams in high-rise buildings

  • Londhe, R.S.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.39-59
    • /
    • 2011
  • Results of an experimental investigation on the behavior and ultimate shear capacity of 27 reinforced concrete Transfer (deep) beams are summarized. The main variables were percent longitudinal(tension) steel (0.28 to 0.60%), percent horizontal web steel (0.60 to 2.40%), percent vertical steel (0.50to 2.25%), percent orthogonal web steel, shear span-to-depth ratio (1.10 to 3.20) and cube concrete compressive strength (32 MPa to 48 MPa).The span of the beam has been kept constant at 1000 mm with100 mm overhang on either side of the supports. The result of this study shows that the load transfer capacity of transfer (deep) beam with distributed longitudinal reinforcement is increased significantly. Also, the vertical shear reinforcement is more effective than the horizontal reinforcement in increasing the shear capacity as well as to transform the brittle mode of failure in to the ductile mode of failure. It has been observed that the orthogonal web reinforcement is highly influencing parameter to generate the shear capacity of transfer beams as well as its failure modes. Moreover, the results from the experiments have been processed suitably and presented an analytical model for design of transfer beams in high-rise buildings for estimating the shear capacity of beams.

Predicting compressive strength of bended cement concrete with ANNs

  • Gazder, Uneb;Al-Amoudi, Omar Saeed Baghabara;Khan, Saad Muhammad Saad;Maslehuddin, Mohammad
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.627-634
    • /
    • 2017
  • Predicting the compressive strength of concrete is important to assess the load-carrying capacity of a structure. However, the use of blended cements to accrue the technical, economic and environmental benefits has increased the complexity of prediction models. Artificial Neural Networks (ANNs) have been used for predicting the compressive strength of ordinary Portland cement concrete, i.e., concrete produced without the addition of supplementary cementing materials. In this study, models to predict the compressive strength of blended cement concrete prepared with a natural pozzolan were developed using regression models and single- and 2-phase learning ANNs. Back-propagation (BP), Levenberg-Marquardt (LM) and Conjugate Gradient Descent (CGD) methods were used for training the ANNs. A 2-phase learning algorithm is proposed for the first time in this study for predictive modeling of the compressive strength of blended cement concrete. The output of these predictive models indicates that the use of a 2-phase learning algorithm will provide better results than the linear regression model or the traditional single-phase ANN models.

Prediction of shear strength and drift capacity of corroded reinforced concrete structural shear walls

  • Yang, Zhihong;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.245-257
    • /
    • 2022
  • As the main lateral load resisting system in high-rise reinforced concrete structures, the mechanical performance of shear wall has a significant impact on the structure, especially for high-rise buildings. Steel corrosion has been recognized as an important factor affecting the mechanical performance and durability of the reinforced concrete structures. To investigate the effect on the seismic behaviour of corroded reinforced concrete shear wall induced by corrosion, analytical investigations and simulations were done to observe the effect of corrosion on the ultimate seismic capacity and drift capacity of shear walls. To ensure the accuracy of the simulation software, several validations were made using both non-corroded and corroded reinforced concrete shear walls based on some test results in previous literature. Thereafter, a parametric study, including 200 FE models, was done to study the influence of some critical parameters on corroded structural shear walls with boundary element. These parameters include corrosion levels, axial force ratio, aspect ratio, and concrete compressive strength. The results obtained would then be used to propose equations to predict the seismic resistance and drift capacity of shear walls with various corrosion levels.