• 제목/요약/키워드: Load Power Factor limits

Search Result 16, Processing Time 0.024 seconds

The measurement & Analysis of Voltage Unbalance Factor at LV Customer of Three-Phase Four-Wire System (3상 4선식 저압 수용가의 전압 불평형율 측정분석)

  • Kim, Jong-Gyeum;Park, Young-Jin;Lee, Eun-Woong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.43-47
    • /
    • 2004
  • Most of LV customer has been composed the 3-phase four wire system distribution system which is supplying simultaneously at the 1-phase & 3-phase load. In this system, the composition of the power apparatus system is simple rather than conventional separation mode of the 1-phase & 3-phase, But due to uneven load unbalance or unclean power quality, various kinds such as do-rating or power losses become an issue. In this paper, we measured and analyzed voltage and current waveform in the field, compared with internationally allowable voltage unbalance limits.

  • PDF

Energy Forecasting Information System of Optimal Electricity Generation using Fuzzy-based RERNN with GPC

  • Elumalaivasan Poongavanam;Padmanathan Kasinathan;Karunanithi Kandasamy;S. P. Raja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2701-2717
    • /
    • 2023
  • In this paper, a hybrid fuzzy-based method is suggested for determining India's best system for power generation. This suggested approach was created using a fuzzy-based combination of the Giza Pyramids Construction (GPC) and Recalling-Enhanced Recurrent Neural Network (RERNN). GPC is a meta-heuristic algorithm that deals with solutions for many groups of problems, whereas RERNN has selective memory properties. The evaluation of the current load requirements and production profile information system is the main objective of the suggested method. The Central Electricity Authority database, the Indian National Load Dispatch Centre, regional load dispatching centers, and annual reports of India were some of the sources used to compile the data regarding profiles of electricity loads, capacity factors, power plant generation, and transmission limits. The RERNN approach makes advantage of the ability to analyze the ideal power generation from energy data, however the optimization of RERNN factor necessitates the employment of a GPC technique. The proposed method was tested using MATLAB, and the findings indicate that it is effective in terms of accuracy, feasibility, and computing efficiency. The suggested hybrid system outperformed conventional models, achieving the top result of 93% accuracy with a shorter computation time of 6814 seconds.

The Measurement & Analysis of Voltage Unbalance Factor at LV Customer of Three-Phase Four-Wire System (3상 4선식 저압 수용가의 전압 불평형률 측정 분석)

  • Kim, Jong-Gyeoum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.91-99
    • /
    • 2004
  • Most of LV customer have applied the 3-phase four wire system distribution system because it has advantage of supplying both of 1-phase at 3-phase loads simultaneously. Due to its structural simplicity, it is more convenient for use rather than the conventional separated scheme. But once in a while uneven load unbalance or unclean power quality lead some problems such as do-rating or power losses. In this paper, voltage and current waveform in the actual fields have been measured and analyzed in relation with intermationally allowable voltage unbalance limits.

Voltage Unbalance Evaluation in Autotransformer-Fed Electric Railway Systems using Circuit Analysis (회로해석을 이용한 전기철도 급전시스템의 전압불평형 평가)

  • 오광해;차준민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.20-28
    • /
    • 1998
  • This study proposes a new method to estimate voltage unbalance more exactly using Thevenin's equivalent circuit. The conventional simple formula were easily applied to evaluate voltage unbalance. Because the formula was derived on the assumption that traction load would be directly connected to the secondary windings of the main transformer, they could not consider the detailed characteristics of traction power supply system, for example, self and mutual impedances of rail, catenary and return feeder. So, the ac쳐racy of the results could not be guaranteed. The proposed algorithm is applied to a standard autotransformer-fed test system to analyze unbalance phenomena. Through simulations, we could evaluate voltage and current unbalance factors and compare the voltage unbalance of the three transformer connection schemes : single phase, V- and Scott-connections which are required for suitable train operation schedules. Additionally, we could determine the combinations of trains which can be operated under the unbalance factor limits.

  • PDF

A Simple Seismic Vulnerability Sorting Method for Electric Power Utility Tunnels (전력구의 간편 지진취약도 선별법)

  • Kang, Choonghyun;Huh, Jungwon;Park, Inn-Joon;Hwang, Kyeong Min;Jang, Jung Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.110-118
    • /
    • 2018
  • Due to recent earthquakes, there is a growing awareness that Korea is not a safe zone for earthquakes any more. Therefore, the review of various aspects of the seismic safety of the infrastructures are being carried out. Because of the characteristics of the underground structure buried in the ground, the electric power utility tunnels must be considered not only for the inertia and load capacity of the structure itself but also the characteristics of the surrounding soils. An extensive and accurate numerical analysis is inevitably required in order to consider the interaction with the ground, but it is difficult to apply the soil-structure interaction analyses, which generally requires high cost and extensive time, to all electric power utility tunnel structures. In this study, the major design variables including soil characteristics are considered as independent variables, and the seismic safety factor, which is the result of the numerical analysis, is considered as a dependent variable. Thus, a method is proposed to select vulnerable electric power utility tunnels with low seismic safety factor while excluding costly and time-consuming numerical analyses through the direct correlation analysis between independent and dependent variables. Equations of boundary limits were derived based on the distribution of the seismic safety factor and the cover depth and rebar amounts with high correlation relationship. Consequently, a very efficient and simple approach is proposed to select vulnerable electric power utility tunnels without intensive numerical analyses. Among the 108 electric power utility tunnels that were investigated in this paper, 30% were screened as fragile structures, and it is confirmed that the screening method is valid by checking the safety factors of the fragile structure. The approach is relatively very simple to use and easy to expand, and can be conveniently applied to additional data to be obtained in the future.

A Study on the Analysis of Electric Energy Pattern Based on Improved Real Time NIALM (개선된 실시간 NIALM 기반의 전기 에너지 패턴 분석에 관한 연구)

  • Jeong, Han-Sang;Sung, Kyung-Sang;Oh, Hae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.34-42
    • /
    • 2017
  • Since existing nonintrusive appliance load monitoring (NIALM) studies assume that voltage fluctuations are negligible for load identification, and do not affect the identification results, the power factor or harmonic signals associated with voltage are generally not considered parameters for load identification, which limits the application of NIALM in the Smart Home sector. Experiments in this paper indicate that the parameters related to voltage and the characteristics of harmonics should be used to improve the accuracy and reliability of the load monitoring system. Therefore, in this paper, we propose an improved NIALM method that can efficiently analyze the types of household appliances and electrical energy usage in a home network environment. The proposed method is able to analyze the energy usage pattern by analyzing operation characteristics inherent to household appliances using harmonic characteristics of some household appliances as recognition parameters. Through the proposed method, we expect to be able to provide services to the smart grid electric power demand management market and increase the energy efficiency of home appliances actually operating in a home network.