• Title/Summary/Keyword: Load Interaction Effect

Search Result 277, Processing Time 0.032 seconds

The Vortical Flow Field of Delta Wing with Leading Edge Extension

  • Lee, Ki-Young;Sohn, Myong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.914-924
    • /
    • 2003
  • The interaction and breakdown of vortices over the Leading Edge Extension (LEX) - Delta wing configuration has been investigated through wing-surface pressure measurements, the off-surface flow visualization, and 5-hole probe measurements of the wing wake section. The description focused on analyzing the interaction and the breakdown of vortices depending on the angle of attack and the sideslip angle. The Effect of angle of attack and sideslip angle on the aerodynamic load characteristics of the model is also presented. The sideslip angle was found to be a very influential parameter of the vortex flow over the LEX-delta wing configuration. The introduction of LEX vortex stabilized the vortex flow, and delayed the vortex breakdown up to a higher angle of attack. The vortex interaction and breakdown was promoted on the windward side, whereas it was suppressed on the leeward side.

Vibration Serviceability Evaluation of Railway Bridges Considering Bridge-train Transfer function (열차-교량 진동전달특성을 이용한 철도교량의 진동사용성 평가기법)

  • Jeon, Bub-Gyu;Kim, Nam Sik;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.359-366
    • /
    • 2009
  • This paper aims for analyzing the vibration serviceability of train by simply expressing its vertical vibration when it passes a railway bridge. For this purpose, bridge-train transfer function was derived and bridge-train interaction analysis was performed by using the derived function. The bridge-train transfer function was developed with the assumption that train is a single mass-spring system, and bridge-train interaction analysis was performed on simple beams of KTX passenger car. The vertical acceleration signals of passenger cars obtained from bridge-train interaction analysis were compared with them of cars obtained from the bridge-train transfer function. As a result, it could be estimated to express the vertical vibration inside the passenger car required for vibration serviceability evaluation by using the vertical vibration of bridges obtained from moving load analysis. Therefore, it may be possible to evaluate the vibration serviceability of railway bridges considering bridge-train interaction effect.

  • PDF

An Analytical Study on Seismic Response Characteristics Considering Soil-Structure-Equipment Interaction (지반-구조물-설비 상호작용을 고려한 지진응답 특성에 관한 해석적 연구)

  • Oh, Hyeon-Jun;Kim, Yousok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.253-263
    • /
    • 2023
  • Non-structural elements, such as equipment, are typically affixed to a building's floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building's structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.

Analysis of settlements of space frame-shear wall-soil system under seismic forces

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1255-1276
    • /
    • 2015
  • The importance of considering soil-structure interaction effect in the analysis and design of RC frame buildings is increasingly recognized but still not penetrated to the grass root level owing to various complexities involved. It is well established fact that the soil-structure interaction effect considerably influence the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic lateral loads. In the present work, the linear soil-structure analysis of a G+5 storey RC shear wall building frame resting on isolated column footings and supported by deformable soil is presented. The finite element modelling and analysis is carried out using ANSYS software under normal loads as well as under seismic loads. Various load combinations are considered as per IS-1893 (Part-1):2002. The interaction analysis is carried out with and without shear wall to investigate the effect of inclusion of shear wall on the total and differential settlements in the footings due to deformations in the soil mass. The frame and soil mass both are considered to behave in linear elastic manner. It is observed that the soil-structure interaction effect causes significant total and differential settlements in the footings. Maximum total settlement in footings occurs under vertical loads and inner footings settle more than outer footings creating a saucer shaped settlement profile of the footings. Each combination of seismic loads causes maximum differential settlement in one or more footings. Presence of shear wall decreases pulling/pushing effect of seismic forces on footings resulting in more stability to the structures.

Lab-scale impact test to investigate the pipe-soil interaction and comparative study to evaluate structural responses

  • Ryu, Dong-Man;Lee, Chi-Seung;Choi, Kwang-Ho;Koo, Bon-Yong;Song, Joon-Kyu;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.720-738
    • /
    • 2015
  • This study examined the dynamic response of a subsea pipeline under an impact load to determine the effect of the seabed soil. A laboratory-scale soil-based pipeline impact test was carried out to investigate the pipeline deformation/strain as well as the interaction with the soil-pipeline. In addition, an impact test was simulated using the finite element technique, and the calculated strain was compared with the experimental results. During the simulation, the pipeline was described based on an elasto-plastic analysis, and the soil was modeled using the Mohr-Coulomb failure criterion. The results obtained were compared with ASME D31.8, and the differences between the analysis results and the rules were specifically investigated. Modified ASME formulae were proposed to calculate the precise structural behavior of a subsea pipeline under an impact load when considering sand- and clay-based seabed soils.

Dynamic response of a lined tunnel with transmitting boundaries

  • Fattah, Mohammed Y.;Hamoo, Mohammed J.;Dawood, Shatha H.
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.275-304
    • /
    • 2015
  • The objective of this paper is to investigate the validity of transmitting boundaries in dynamic analysis of soil-structure interaction problems. As a case study, the proposed Baghdad metro line is considered. The information about the dimensions and the material properties of the concrete tunnel and surrounding soil were obtained from a previous study. A parametric study is carried out to investigate the effect of several parameters including the peak value of the horizontal component of earthquake displacement records and the frequency of the dynamic load. The computer program (Mod-MIXDYN) is used for the analysis. The numerical results are analyzed for three conditions; finite boundaries (traditional boundaries), infinite boundaries modelled by infinite elements (5-node mapped infinite element) presented by Selvadurai and Karpurapu, 1988), and infinite boundaries modelled by dashpot elements (viscous boundaries). It was found that the transmitting boundary absorbs most of the incident energy. The distinct reflections observed for the "fixed boundaries" disappear by using "transmitted boundaries". This is true for both cases of using viscous boundaries or mapped infinite elements. The type and location of the dynamic load represent two controlling factors in deciding the importance of using infinite boundaries. It was found that the results present significant differences when earthquake is applied as a base motion or a pressure load is applied at the surface ground. The peak value of the vertical displacement at nodes A, B, E and F (located at the tunnel's crown and side walls, and at the surface above the tunnel and at the surface 6.5 m away from tunnel's centre respectively) increases with the frequency of the surface pressure load for both cases 1 and 2 (traditional boundaries and mapped infinite elements respectively) while it decreases for case 3 (viscous boundaries). The modular ratio Ec/Es (modulus of elasticity of the concrete lining to that of the surrounding soil) has a considerable effect on the peak value of the horizontal displacement at node B (on the side wall of the tunnel lining) increase about (17.5) times, for the three cases (1, 2, and 3).

Dynamic Analysis of Floating Multi-Bodies Considering Crane Impact Loads (크레인 충격하중을 고려한 다중 부유체 운동해석)

  • Kim, Young-Bok;Kim, Yong-Yook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • The concept of the Mobile Harbor had been made recently as a kind of feeder vehicle to transfer a certain amount of container boxes (i.e. 250 TEU at a time) from main ocean container vessels over 5,000 TEU capacity to the container terminal on land. In a harbor a short distance apart from the land, the container loading/unloading operation has to be performed on the main deck of the Mobile Harbor using the container cranes in the state of side-by-side mooring with protection of fenders and robot arms in the gap. Even under the ocean condition of the sea state class 2 or 3, the operation has to be confirmed to be safely performed. In this situation, the floating bodies considering the multiple-body interaction effect also has to be examined whether they might behave safely or not. Especially, this study focuses on the dynamic behavior of the Mobile harbor when a container box is hanged on the crane and the impact load due to the slewing motion is imposed in a certain sea state. The motion response should be controlled within the motion level to assure the safe operation.

Behavior of Composite Structure by Nonlinearity of Steel - concrete Interface (I) -Parametric Study for Nonlinear Model of Interface- (강·콘크리트 경계면의 비선형성에 따른 합성구조체 거동(I) -비선형 경계면 모델에 따른 매개변수 연구-)

  • Jeong, Youn Ju;Jung, Kwang Hoe;Kim, Byung Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.499-507
    • /
    • 2003
  • As the load is increased on the steel-concrete composite structure, its interface begins to show nonlinear behavior due to the reduction of interaction, micro-crack, slip and separation, and it causes slip-softening, Therefore, it is essential to consider the partial-interaction analysis technique. Until now, however, full-interaction or, in some instances, the linear-elastic model, which are insufficient to simulate accurate behavior, are assumed in the analysis of composite structure since the analysis method and nonlinear model for interface are very difficult and complicated. Therefore, the design of composite structure is followed by the experimental method which is inefficient-because a number of tests have to be carried out according to the design environments. In this study, we carried out the nonlinear analysis according to various interface nonlinear models by interaction magnitude, and analyzed more accurate structural behavior and performance by maximum tangential traction and slip-softening at the interface. As a result of this study. we were able to prove that the nonlinear model of interface more exactly represents behavior after yielding, such as ultimate load: that initial tangential stiffness of interface has a significant effect on the yielding load of structural members or part: and that the maximum tangential traction and slip-softening mainly effects structural yielding and ultimate load. Therefore, the structural performance of composite structure is highly dependent on the steel-concrete interface or interaction, which may result in initial tangential stiffness, maximum tangential traction and slip-softening in nonlinear model.

The Effect of Gaps in Concrete Bearing Surface of Direct Fixation Track on Vehicle and Track Interaction (직결궤도 체결구 하부에 발생한 단차가 차량/궤도 상호작용에 미치는 영향)

  • Yang, Sin-Chu;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.50-57
    • /
    • 2010
  • Various installation faults may lie in fasteners in the construction of a direct-fixation track by the top-down method. At an extreme, they may cause excessive interaction between the train and track, compromise the running safety of the train, and cause damage to the track components. Therefore, the faults need to be kept within the allowable level through an investigation of their effects on the interactions between the train and track. In this study, the vertical dynamic stiffness of fasteners in installation faults was measured based on the dynamic stiffness test by means of an experimental apparatus that was devised to feasibly reproduce gap faults. This study proposes an effective analytical model for a train-track interaction system in which most elements, except the nonlinear wheel-rail contact and some components that behave bi-linearly, exhibit linear behavior. To investigate the effect of the behavior of fasteners in gap faults in a direct-fixation track on the vehicle and track, vehicle-track interaction analyses were carried out, targeting key review parameters such as the wheel load reduction factor, vertical rail displacement, rail bending stress, and mean stress of the elastomer. From the results, it was noted that the gap faults in the concrete bearing surface of a direct-fixation track need to be limited for the sake of the long-term durability of the elastomer than for the running safety of the train or the structural safety of the track.

  • PDF

Wind loading on trees integrated with a building envelope

  • Aly, Aly Mousaad;Fossati, Fabio;Muggiasca, Sara;Argentini, Tommaso;Bitsuamlak, Girma;Franchi, Alberto;Longarini, Nicola;Crespi, Pietro;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.69-85
    • /
    • 2013
  • With the sustainability movement, vegetated building envelopes are gaining more popularity. This requires special wind effect investigations, both from sustainability and resiliency perspectives. The current paper focuses on wind load estimation on small- and full-scale trees used as part of green roofs and balconies. Small-scale wind load assessment was carried out using a wind tunnel testing in a global-effect study to understand the interference effects from surrounding structures. Full-scale trees were investigated at a large open-jet facility in a local-effect study to account for the wind-tree interaction. The effect of Reynolds number combined with shape change on the overall loads measured at the base of the trees (near the roots) has been investigated by testing at different model-scales and wind speeds. In addition, high-speed tests were conducted to examine the security of the trees in soil and to assess the effectiveness of a proposed structural mitigation system. Results of the current research show that at relatively high wind speeds the load coefficients tend to be reduced, limiting the wind loads on trees. No resonance or vortex shedding was visually observed.