• Title/Summary/Keyword: Load Interaction Effect

Search Result 277, Processing Time 0.03 seconds

Identification on Fatigue Failure of Impeller at Single Stage Feedwater Pumps During Commissioning Operation (단단 주 급수 펌프 임펠러에서 시운전 중 발생한 피로 절손에 관한 규명 연구)

  • Kim, Yeon-Whan;Kim, Kye-Yean;Bae, Chun-Hee;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.937-942
    • /
    • 2008
  • This paper presents a case history on failures of impeller and shaft due to pressure pulsation at single stage feed water pumps in 700 MW nuclear power plant during commissioning operation. The pumps had been service and had run for approximately $40{\sim}50$ hours. For the most part, the failures of impeller occurred with the presence of a number of fatigue cracks. All cracks were associated with the deleterious surface layer of impeller by visual and metallurgical examination. On-site testing and analytical approach was performed on the systems to diagnose the problem and develop a solution to reduce the effect of exciting sources. A major concern at high-energy centrifugal pump is the pressure pulsation created from trailing edge of the Impeller blade, flow separation and recirculation at centrifugal pumps of partial load. Pressure pulsation due to the interaction generating between impeller and casing coincided with natural frequencies of the impeller and shaft system during 1ow load operation. It was identified that dynamic stress exceeding the fatigue strength of the material at the thin shroud section due to the hydraulic instability at running condition below BEP.

Exploring the Applicability of the Cognitive Theory of Multimedia Learning for Smart Pad Based Learning with a Focus on Principles of Multimedia and Individual Differences (스마트 패드 기반 학습 프로그램에서 멀티미디어 학습에 관한 인지이론적 원리의 적용가능성 탐색: 멀티미디어 원리와 개인차 원리를 중심으로)

  • Kim, Bo-Eun;Lee, Ye-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.986-997
    • /
    • 2011
  • The purpose of this study is to verify the cognitive theory of Multimedia learning in a Smart Pad environment. Specifically, the viability of the multimedia principle and individual difference principle was tested for this study. To accomplish this, participants were divided into two groups based on their prior knowledge level (high/low), and members of each group were given one of two Smart Pad based programs, one text-based and the other text and image based. Results indicate that the use of images and the interaction between image use and prior knowledge did not have a significant effect on cognitive load levels. However, there were significant effects on learning achievement. This study implies that when developing Smart Pad based learning content, the small screen size compared to PC monitors, types and functions of images, and learning objectives should be considered.

Reliability Analysis for Fatigue Damage of Steel Bridge Details (강교 부재의 피로손상에 대한 신뢰성 해석)

  • Park, Yeon Soo;Han, Suk Yeol;Suh, Byoung Chal
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.475-487
    • /
    • 2003
  • This study developed an analysis model of estimating fatigue damage using the linear elastic fracture mechanics method. Stress history occurring to an element when a truck passed over a bridge was defined as block loading and crack closure theory explaining load interaction effect was applied. Stress range frequency analysis considering dead load stress and crack opening was done. Probability of stress range frequency distribution was applied and the probability distribution parameters were estimated. The Monte Carlo simulation of generating the probability various of distribution was performed. The probability distribution of failure block numbers was obtained. With this the fatigue reliability of an element not occurring in failure could be calculated. The failure block number divided by average daily truck traffic remains the life of a day. Fatigue reliability analysis model was carried out for the welding member of cross beam flange and vertical stiffener of steel box bridge using the proposed model. Consequently, a 3.8% difference was observed between the remaining life in the peak analysis method and in the proposed analysis model. The proposed analysis model considered crack closure phase and crack retard.

Influence of the cylinder height on the elasto-plastic failure of locally supported cylinders

  • Jansseune, Arne;De Corte, Wouter;Vanlaere, Wesley;Van Impe, Rudy
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.291-302
    • /
    • 2012
  • Frequently, steel silos are supported by discrete supports or columns to permit easy access beneath the barrel. In such cases, large loads are transferred to the limited number of supports, causing locally high axial compressive stress concentrations in the shell wall above the supports. If not dealt with properly, these increased stresses will lead to premature failure of the silo due to local instability in the regions above the supports. Local stiffening near the supports is a way to improve the buckling resistance, as material is added in the region of elevated stresses, levelling these out to values found in uniformly supported silos. The aim of a study on the properties of local stiffening will then be to increase the failure load, governed by an interaction of plastic collapse and elastic instability, to that of a discrete supported silo. However, during the course of such a study it was found that, although the failure remains local, the cylinder height is also a parameter that influences the failure mechanism, a fact that is not properly taken into account in current design practice and codes. This paper describes the mechanism behind the effect of the cylinder height on the failure load, which is related to pre-buckling deformations of the shell structure. All results and conclusions are based on geometrically and materially non-linear finite element analyses.

The Study of Synergy between the BchE-k Variant and the ApoE Gene in the Alzheimer Dementia of the Korean Population

  • Shin, Eun-Sim;Yoon, Song-Ro;Choi, Soo-Kyung;Kim, Soo-Young
    • Journal of Genetic Medicine
    • /
    • v.3 no.1
    • /
    • pp.29-32
    • /
    • 1999
  • The Apolipoprotein E type 4 allele (ApoE ${\varepsilon}4$) is genetically associated with the common late onset familial and sporadic forms of Alzheimer's disease. The BchE-k variant, which is the common variant of the BchE gene, has been reported to show allelic association with AD in subjects who are also carriers of the ${\varepsilon}4$ allele of the ApoE, especially in subjects over the age of 75. This study was performed to evaluate the distribution of the ApoE and the BchE genotypes in the healthy and AD groups and to evaluate the synergy between the BchE-k variant and the ApoE ${\varepsilon}4$ in AD. The ApoE and the BchE genotypes were determined in DNA samples from 610 healthy people and 60 LOAD patients by using ARMS by standard agarose gel electrophoresis. The effect of the ApoE ${\varepsilon}4$ was closely related to AD(p<0.05). A comparison between the AD patients and the healthy individuals, both with the ${\varepsilon}4$ allele, indicated an interaction between the BchE-k and the ApoE ${\varepsilon}4$(p<0.05). The association of the BchE-k with AD was limited to carriers of the ApoE ${\varepsilon}4$ allele, among whom the presence of the BchE-k gave an odds ratio of AD 3.48 (95% C.I. 1.3-9.2). Therefore, these results suggested that further evidence of an association between the ApoE ${\varepsilon}4$ and LOAD, and the BchE-k acts in synergy with the ApoE ${\varepsilon}4$ as a susceptibility gene for AD.

  • PDF

Analysis on the characteristics of the earth pressure distribution induced by the integrated steel pipe-roof construction (일체형 강관 파이프루프 시공에 따른 주변 지반의 토압 분포 특성 분석)

  • Sim, Youngjong;Jin, Kyu-Nam;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.455-468
    • /
    • 2013
  • In recent, various types of steel pipe-roof methods, which is reinforced by mortar after propulsion of steel pipe into the ground, have been used for the construction of trenchless underpass. Integrated steel pipe-roof has flexural stiffness and can resist against overburden load and reduce the stress acting on the concrete underpass structures. Due to arching effect, vertical and horizontal stress distribution around the steel pipe-roof is changing. In this study, therefore, the characteristic of stress distribution around the underpass induced by the construction of integrated steel pipe-roof is investigated by using numerical method. To examine the soil-structure interaction, interface element is introduced. Results show that vertical stress acting on the concrete structure placing inside the steel pipe-roof is significantly reduced due to arching effect and flexural stiffness of integrated steel pipe-roof. Design load can be reduced and effective design of underpass will be available if the earth pressure reduction due to arching effect is considered in the design stage.

Effect of Circumferential Tool Path Control on Friction Stir Spot Welding of Al/Fe Dissimilar Metal Joint (툴 경로제어를 이용한 Al/Fe 이종금속 마찰교반점용접 공정특성 평가)

  • Yoon, Jin Young;Kim, Cheolhee;Rhee, Sehun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • Joining Al/Fe dissimilar metals is becoming a subject of special interest in the assembly of automotive parts as a trade-off between the weight lightening and the cost reduction. Although various studies have been introduced to join Al alloy with the steel sheet by fusion welding, weak joint strength and galvanic corrosion still remained as problems to be solved. As a solid state welding, friction stir welding has been preferred to fusion welding processes in the dissimilar metal joints. This study investigated friction stir spot welding (FSSW) of Al alloy to the thin steel sheet with a thickness of 0.65 mm. The conventional FSSW is a stationary spot welding process but new approach adopted an additional circumferential movement in company with high speed tool rotation. A full factorial experimental design was implemented, and the main and interaction effects of parameters were analysed on the failure load in the tensile shear test. The direction and radius of rotation were statistically significant parameters and these two parameters affected the joint width and the shape of the hook.

Computerized Modules for Seismic Performance Evaluation of Existing Buildings (기존건축물 내진성능평가를 위한 전산시스템 모듈 개발)

  • Hwang, Sunwoo;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2016
  • Seismic performance evaluation of existing building usually needs much time and man power, especially in case of nonlinear analysis. Many data interaction steps for model transfer are needed and engineers should spend much time with simple works like data entry. Those time-consuming steps could be reduced by applying computerized and automated modules. In this study, computational platform for seismic performance evaluation was made with several computerized modules. StrAuto and floor load transfer module offers a path that can transfer most linear model data to nonlinear analysis model so that engineers can avoid a lot of repetitive work for input information for the nonlinear analysis model. And the new nonlinear property generator also helps to get the nonlinear data easily by importing data from structural design program. To evaluate the effect of developed modules on each stages, seismic performance evaluation of example building was carried out and the lead time was used for the quantitative evaluation.

Homogenization based continuum damage mechanics model for monotonic and cyclic damage evolution in 3D composites

  • Jain, Jayesh R.;Ghosh, Somnath
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.279-301
    • /
    • 2008
  • This paper develops a 3D homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar product of the strain increment and the normal to the damage surface in strain space. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors. The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic and cyclic damage progression in composite structures.

Lean Combustion Characteristics in a S.I Engine with SCV by Operating Conditions (SCV 가솔린 엔진의 운전조건에 따른 희박연소 특성)

  • Choi, Su-Jin;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.161-168
    • /
    • 2000
  • Lean combustion in a SI engine is one of the best solution for the improvement of fuel economy and reduction of pollutant emission. In order to access a lean combustion engine, stable combustion at lean AlF ratio is needed. In this paper, the effect of fuel injection timing on lean misfire limit has been investigated in an MPI engine. To investigate the interaction of injection timing and intake flow characteristics, three different swirl generating SCV(swirl control valve) configurations were considered, and investigated their effects on lean misfire limit and torque at full load operation. Also the effects of spark timing on lean combustion has been investigated. Lean combustion has been examined and the results are reported in this paper. SCV B has been developed to satisfy the requirements of sufficient swirl generation to improve lean combustion and stable performance. It is found that injection timing, spark timing and intake air motion govern the stable lean combustion.