• Title/Summary/Keyword: Load Distribution Method

Search Result 1,429, Processing Time 0.028 seconds

Separation Device of Deployable SAR Antenna for satellite (위성용 전개형 SAR 안테나 구속분리장치 )

  • Junwoo, Choi;Bohyun, Hwang;Byungkyu, Kim;Dong-yeon, Kim;Hyun-guk, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.123-128
    • /
    • 2022
  • This paper proposes a non-explosive separation device for the deployable SAR antenna. This device utilises a Ni-Cr wire to restrain the antenna's belt mechanism, and joule-heating is used to minimise the impact of deployment. After the Ni-Cr wire has been cut, the device is deployed through the preload of the belt mechanism. Considering the design load(99g) and preload conditions, FEM analysis for AL7050 and Ti was performed. This analysis revealed that the amount of deformation for AL7050 was 0.256 mm with a margin of +0.09. In addition, by performing orbital thermal analysis, the temperature distribution for AL7050 in the worst cold case is confirmed as -50 to +2℃ and -10 to +90℃ in the worst hot case. This analysis confirmed that the separation device would remain stable even in the worst environment.

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Experimental Study on the Characteristics of Ground Heat Exchange in Heating Greenhouses (난방 온실의 지중열 교환 특성에 관한 실험적 연구)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.218-223
    • /
    • 2016
  • The calculation method of ground heat exchange in greenhouses has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the soil temperature distribution and the soil heat flux in three plastic greenhouses of different size and location during the heating period. And then the calculation methods of ground heat exchange in greenhouses were reviewed. The soil temperature distributions measured in the heating greenhouse were compared with the indoor air temperature, the results showed that soil temperatures were higher than room temperature in the central part of greenhouse, and soil temperatures were lower than room temperature in the side edge of greenhouse. Therefore, it is determined that the ground heat gain in the central part of greenhouse and the perimeter heat loss in the side edge of greenhouse are occurred, there is a difference depending on the size of greenhouse. Introducing the concept of heat loss through the perimeter of building and modified to reflect the size of greenhouse, the calculation method of ground heat exchange in greenhouses is considered appropriate. It was confirmed that the floor heat loss measured by using soil heat flux sensors increased linearly in proportion to the temperature difference between indoor and outdoor. We derived the reference temperature difference which change the direction of ground heat flow and the perimeter heat loss factor from the measured heat flux results. In the heating design of domestic greenhouses, reference temperature differences are proposed to apply $12.5{\sim}15^{\circ}C$ in small greenhouses and around $10^{\circ}C$ in large greenhouses. Perimeter heat loss factors are proposed to apply $2.5{\sim}5.0W{\cdot}m^{-1}{\cdot}K^{-1}$ in small greenhouses and $7.5{\sim}10W{\cdot}m^{-1}{\cdot}K^{-1}$ in large greenhouses as design standard data.

An Analysis of Behavior and Strength of Cement using Improved Materials by Laboratory Model Test (실내 모형실험에 의한 지반보강 개량체 특성 분석)

  • Oh, Philjin;Park, Minchul;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.19-29
    • /
    • 2012
  • For foundation of Port structure, it is essential geotechnical understanding about feature of ground and the geologic formation which is different to terrestrial ground. What is most important is the understanding of soft ground clay, which is much softer than terrestrial ground. To build foundation of a port structure which is mainly gravity based on the special geographical circumstance that is on the sea, the improvement method of foundation should be applied according to soft clay ground features. Therefore, in this study, the behaviors of improved materials with strength were analyzed on the soft clay foundation where suppose to be located the foundation of port structure. The laboratory model test has been conducted in 2 cases with unconfined compression strength of improved materials, 25kPa and 125kPa. Cement, water, and in-situ soft clay were combined at a fixed rate and made a shape of 5cm diameter ${\times}$ 70cm height column. Improved materials were located with replacement ratio(11%, 35% and 61%) in 38cm diameter ${\times}$ 80cm height cylinder. Finally, the stress distribution ratio on the improved materials and clay, settlement was analyzed by applying a load of 10kPa, 30kPa, and 50kPa.

On the Statistical Properties of the Parameters B and q in Creep Crack Growth Law, da/dt=B(C*)q, in the Case of Mod. 9Cr-1Mo Steel (Mod. 9Cr-1Mo강의 크리프 균열 성장 법칙의 파라메터 B와 q의 통계적 성질에 관한 연구)

  • Kim, Seon-Jin;Park, Jae-Young;Kim, Woo-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.251-257
    • /
    • 2011
  • This paper deals with the statistical properties of parameters B and q in the creep crack growth rate (CCGR) law, da/dt=B$(C^*)^q$, in Mod. 9Cr-1Mo (ASME Gr.91) steel which is considered a candidate materials for fabricating next generation nuclear reactors. The CCGR data were obtained by creep crack growth (CCG) tests performed on 1/2-inch compact tension (CT) specimens under an applied load of 5000N at a temperature of $600^{\circ}C$. The CCG behavior was analyzed statistically using the empirical equation between CCGR, da/dt and the creep fracture mechanics parameter, $C^*$. The B and q values were determined for each specimen by the least-squares fitting method. The probability distribution functions for B and q were investigated using normal, log-normal, and Weibull distributions. As far as this study is considered, it can be appeared that B and q followed the log-normal and Weibull distributions. Moreover, a strong positive linear correlation was found between B and q.

A Numerical Study on the Response of the Tibial Component in Total Knee Arthroplasty to Longitudinal Impact (인공무릎관절 전치환술에 있어 축방향 충격에 의한 Tibial Component의 응답 특성 분석 연구)

  • 조용균;조철형;최재봉;이태수;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.503-511
    • /
    • 1998
  • In this study, the stress distribution for different tibial components was observed In order to Investigate the load transfer and potential failure mechanism of the tibial components subjected to dynamic impact loading and also to evacuate the effect of bone-implant bonding conditions on the implant system. The 3-dimensional finite element models included an intact tibia, cemented metal-backed tibial component, uncemented metal-blocked tibial component, cemented all-polyethylene tibial component, and metal-backed component with a debonded bone/stem interface. The results showed that the cemented metal-hocked component Induced slightly higher peak stress at stem tip than the uncemented component. The peak stress of the all-polyethylene tibia1 component at stem trip showed about half thats of metal-backed tibial components. The all-polyethylene component showed a similar dynamic response to intact tibia. In case of debonded bone/stem interface, the peak stress below the metal tray was three times Higher than that of the fully bonded interface and unstable stress distribution at the stem tip was observed with time, which causes another adverse bone apposition and implant loosening. Thus, the all-polyethylene tibial component bonded fully to the surrounding bone might be most desirable system under an impact loading.

  • PDF

FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES AND DENTURE MOVEMENTS INDUCED BY OVERDENTURES (Overdenture 하에서 하악응력 및 의치의 변위에 관한 유한요소법적 분석)

  • Kim, Joung-Hee;Chung, Chae-Heon;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.1
    • /
    • pp.63-94
    • /
    • 1990
  • The purpose of this study was to analyze the displacement and the magnitude and the mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment tooth and the mandibular supporting bone when various denture base materials, such as acrylic resin and 0.5mm metal base, and various denture base designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. Mandibular arch models, with only canine remaining, were fabricated. In the first denture base design, a space, approximately 1mm thick, was prepared between the denture and the dome abutment. In the second denture base design, contact between the denture and the dome abutment was eliminated except the contact of the occlusal third of the abutment. In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle region, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 kgs on the first molar region(P1) and 7 kgs on the central incisal region (P2) in a vertical direction. Then the force of 10 kgs was applied distributively from the first premolar to the second molar of each model in a vertical direction(P3). The results were as follows. : 1. When the testing vertical loads were given to the selected points of the overdenture, the overdenture showed the rotatory phenomenon, as well as sinking and the displacements of alveolar ridge, abutment and lower border of mandible under the metal base overdenture were less than those under the acrylic resin overdenture. 2. The maximum principal stresses(the maximum tensile stresses) being considered, high tensile stresses occured at the buccal shelf area, the posterior region of the ridge crest and the anterior border region of the mandibular ramus. 3. The minimum principal stresses(the maximum compressive stresses) being considered, high compressive stresses occured at the inferior and posterior border region of the mandible, the mandibular angle and the posterior border region of the mandibular ramus. 4. The vertical load on the central incisal region(P2) produced higher equivalent stress in the mandible than that on any other region(P1, P3) because of the long lever arm distance from the fixed points to the loading point. 5. Higher equivalent stresses were distributed throughout the metal base overdenture than the resin base overdenture under the same loading condition. 6. The case of occlusal third contact of the abutment to the denture produced higher equivalent stresses in the abutment, the mandibular area around the abutment and the overdenture than the case of a 1mm space between the denture and the abutment. 7. Without regard to overdenture base materials and designs, the amounts and distribution patterns of equivalent stresses under the same loading condition were similar in the mucous membrane.

  • PDF

Evaluation on the Applicability of Monitoring for Urban Railway Structure Using Brillouin Optical Correlation Domain Analysis Based Distributed Optical Fiber Sensor (브릴루앙 광 상관영역 기반 분포형 광섬유를 활용한 도시철도 구조물의 모니터링 적용성 평가)

  • Chae, Deokho;Lee, Sungjin;Lee, Jin-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.13-19
    • /
    • 2018
  • Recently, there have been various problems aroused on the domestic infrastructures as the domestic cities become old. Accordingly, the national concerns grow on the urban railway and the related structures, which brings the national interests are brought on the research on the maintenance and rehabilitation of the old infrastructures. The underground structure of urban railway are checked with the strain gages or fiber brag grating (FBG) sensors on the railway. However, these methods are known to have resolution limitations on the investigations of the specified abnormal section. Therefore, the applicability of the Brillouin Optical Correlation Domain Analysis (BOCDA) based distributed fiber optic sensor system on the railway was evaluated in this study. The constructed BOCDA fiber optic sensor system shows high resolution of 10, 20, 50, 100 cm and capability of continuous monitoring on overall or specified section within 2 km range. The applicability evaluation was performed on the 250 m distribution of fiber optic sensors abandoned railway for continuous monitoring. The applicability of the system on the specified area was evaluated with wheel load testing. As a result, data loss tends to increase with the reduction of spatial resolution from 1.0 m to 0.1 m. Even though the measuring speed is reduced with lower spatial resolution, data accuracy increases on the location and deformation. The system can be applicable to various structures if the proper distribution method is invented later.

Reliability Analysis of Access Door Opening Force Measured with a Digital Force Gauge of a Pressurized Smoke Control Zone and Presentation of Optimum Conditions for the Opening Force (디지털 측정기로 측정된 급기가압 제연구역의 출입문 개방력에 대한 신뢰성 분석 및 최적 조건 제시)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.468-473
    • /
    • 2016
  • The aim of this study was to measure the opening force of an access door of a pressurized smoke control zone and verify the reliability of the opening force. For the access door opening force, the opening load of the access door was measured before and after pressurized air had entered the smoke control zone. The reliability of the measured values was verified using the Anderson Darling's statistical analysis method of the Minitab Program. Because the analyzed P values were greater than 0.05 except for some floors before and after the operation of the smoke control equipment, the opening force was found to have 95% reliability. The normal distribution of the measured values showed no relationship with the operation of the smoke control equipment and the precision of the force gauge was believed to be reliable. The major factors for the optimal design of the pressurized smoke control equipment include the precision and reliability of the force gauge, the correct posture of the measuring person, and the same conditions for access doors. Therefore, a digital force gauge is believed to be suitable for measuring the opening force of the access door of a pressurized smoke control zone. In addition, standardization of the posture of a measuring person, the setup of the initial opening force of an access door, etc., are major variables for effective measurements of the door opening force of an access door.