• Title/Summary/Keyword: Load Decomposition

Search Result 135, Processing Time 0.022 seconds

An efficient method for universal equivalent static wind loads on long-span roof structures

  • Luo, Nan;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.493-506
    • /
    • 2017
  • Wind-induced response behavior of long-span roof structures is very complicated, showing significant contributions of multiple vibration modes. The largest load effects in a huge number of members should be considered for the sake of the equivalent static wind loads (ESWLs). Studies on essential matters and necessary conditions of the universal ESWLs are discussed. An efficient method for universal ESWLs on long-span roof structures is proposed. The generalized resuming forces including both the external wind loads and inertial forces are defined. Then, the universal ESWLs are given by a combination of eigenmodes calculated by proper orthogonal decomposition (POD) analysis. Firstly, the least squares method is applied to a matrix of eigenmodes by using the influence function. Then, the universal ESWLs distribution is obtained which reproduces the largest load effects simultaneously. Secondly, by choosing the eigenmodes of generalized resuming forces as the basic loading distribution vectors, this method becomes efficient. Meanwhile, by using the constraint equations, the universal ESWLs becomes reasonable. Finally, reproduced largest load effects by load-response-correlation (LRC) ESWLs and universal ESWLs are compared with the actual largest load effects obtained by the time domain response analysis for a long-span roof structure. The results demonstrate the feasibility and usefulness of the proposed universal ESWLs method.

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

Analysis on short-term decay heat after shutdown during load-follow operation with seasonal and daily scenarios

  • Hwang, Dae Hee;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3878-3887
    • /
    • 2022
  • For the future energy-mix policy for carbon neutrality, demand for the capability of load-follow operation has emerged in nuclear power plants in order to accommodate the intermittency of renewable energy. The short-term decay heat analysis is also required to evaluate the decay heat level varied by the power level change during the load-follow operation, which is a very important parameter in terms of short-term decay heat removal during a grace time. In this study, the short-term decay heat level for 10 days after the shutdown was evaluated for both seasonal and daily load-follow cases. Additionally, the nuclide-wise contribution to the accumulated decay heat for 10 days was analyzed for further understanding of the short-term decay heat behavior. The result showed that in the seasonal case, the decay heat level was mainly determined by the power level right before the shutdown and the amount of each nuclide was varied with the power variation due to the long variation interval of 90 days. Whereas, in the daily case, the decay heat level was strongly impacted by the average power level during operation and meaningful mass variations for those nuclides were not observed due to the short variation interval of 0.5 days.

Buckling of rectangular plates with mixed edge supports

  • Xiang, Y.;Su, G.H.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.401-416
    • /
    • 2002
  • This paper presents a domain decomposition method for buckling analysis of rectangular Kirchhoff plates subjected to uniaxial inplane load and with mixed edge support conditions. A plate is decomposed into two rectangular subdomains along the change of the discontinuous support conditions. The automated Ritz method is employed to derive the governing eigenvalue equation for the plate system. Compatibility conditions are imposed for transverse displacement and slope along the interface of the two subdomains by modifying the Ritz trial functions. The resulting Ritz function ensures that the transverse displacement and slope are continuous along the entire interface of the two subdomains. The validity and accuracy of the proposed method are verified with convergence and comparison studies. Buckling results are presented for several selected rectangular plates with various combination of mixed edge support conditions.

A simplified method for determining the acceleration amplitudes of long-span floor system under walking/running loads

  • Cao, Liang;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.377-387
    • /
    • 2020
  • Modern long-span floor system typically possesses low damping and low natural frequency, presenting a potential vibration sensitivity problem induced by human activities. Field test and numerical analysis methods are available to study this kind of problems, but would be inconvenient for design engineers. This paper proposes a simplified method to determine the acceleration amplitudes of long-span floor system subjected to walking or running load, which can be carried out manually. To theoretically analyze the acceleration response, the floor system is simplified as an anisotropic rectangular plate and the mode decomposition method is used. To facilitate the calculation of acceleration amplitude aP, a coefficient αwmn or αRmn is introduced, with the former depending on the geometry and support condition of floor system and the latter on the contact duration tR and natural frequency. The proposed simplified method is easy for practical use and gives safe structural designs.

Optimal prestress of Tensegrity Structures for External Load (텐세그러티 구조의 외력에 대한 적정 프리스트레스 결정)

  • Ahn, Jung-Tae;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.59-67
    • /
    • 2013
  • This paper presents a new numerical method to analyse tensegrity structures by using singular value decomposition and force method. The tensegrity system consisting of compressive and tensle elements are pin-jointed system. Tensegrity structures, unlike the general structure should be preceded by form-finding. Tensegrity structures form-finding of the self-equilibrium stress stability, seeking to have the process. In this study, tensegrity structures when subjected to external loads, find the optimal pre-stress values was studied.

A Simplified Efficient Algorithm for Blind Detection of Orthogonal Space-Time Block Codes

  • Pham, Van Su;Mai, Linh;Lee, Jae-Young;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.261-265
    • /
    • 2008
  • This work presents a simplified efficient blind detection algorithm for orthogonal space-time codes(OSTBC). First, the proposed decoder exploits a proper decomposition approach of the upper triangular matrix R, which resulted from Cholesky-factorization of the composition channel matrix, to form an easy-to-solve blind detection equation. Secondly, in order to avoid suffering from the high computational load, the proposed decoder applies a sub-optimal QR-based decoder. Computer simulation results verify that the proposed decoder allows to significantly reduce computational complexity while still satisfying the bit-error-rate(BER) performance.

Modeling, simulation and control strategy for the fuel cell process (모델링 및 전산모사를 통한 연료전지공정의 제어전략에 관한 연구)

  • 이상범;이익형;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1012-1015
    • /
    • 1996
  • This study focuses on the optimal operation and control strategy of the fuel cell process. The control objective of the Phosphoric Acid Fuel Cell (PAFC) is established and dynamic modeling equations of the entire fuel cell process are formulated as discrete-time type. On-line optimal control of the MIMO system employs the direct decomposition-coordination method. The objective function is modified as the tracking form to enhance the response capability to the load change. The weight factor matrices Q,R, which are design parameters, are readjusted. This control system is compared with LQI method and the results show that the suggested method is better than the traditional method in pressure difference control.

  • PDF

An Approach to Implementing Distributed Optimal Power Flow (최적조류계산의 분산처리기법에 관한 연구)

  • Kim, Ho-Woong;Kim, Bal-Ho;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.182-186
    • /
    • 1997
  • This paper presents a mathematical approach to implementing distributed optimal power flow (OPF), wherein a regional decomposition technique is adopted to parallelize the OPF. Three mathematical decomposition coordination methods are introduced firs to implement the proposed distributed scheme: the Auxiliary Problem Principle (APP), the Predictor-Corrector Proximal Multiplier Method (PCPM), and the Alternating Direction Method (ADM). Then two alternative schemes for modeling distributed OPF are introduced; the Dummy Generator-Dummy Generator (DGDG) scheme and Dummy Generator-Dummy Load (DGDL) scheme. We present the mathematical analyses of the proposed approach, and demonstrate the approach on several test, systems, including IEEE Reliability Test Systems and parts of the ERCOT (Electric Reliability Council of Texas) system.

  • PDF

A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion (I) - Static Problem - (강체모드분리와 급수전개를 통한 준해석적 민감도 계산 방법의 개선에 관한 연구(I) - 정적 문제 -)

  • Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.585-592
    • /
    • 2003
  • Among various sensitivity evaluation techniques, semi-analytical method(SAM) is quite popular since this method is more advantageous than analytical method(AM) and global finite difference method(FDM). However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified fur individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, an iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes and the error of SAM caused by numerical difference scheme is alleviated by using a Von Neumann series approximation considering the higher order terms for the sensitivity derivatives.