• Title/Summary/Keyword: Load Alignment

Search Result 87, Processing Time 0.023 seconds

우주급 경통 열-흡습 설계

  • Lee, Deog-Gyu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.108-113
    • /
    • 2005
  • Strucutral and hygrothermal analysis for a composite tube is carried out in this study, that provides critical parameters for the design of a highly dimensionally stable space telescope. Carpet plots for laminate effective engineering constants are generated and used for the best tube lay-ups with high elastic modulus and highly insensitive to thermal and moisture expansion, which is essential for maintaining optical alignment of opto-mechanical system under random force applied during a launch campaign and orbital thermal load. Despace in the longitudinal direction under hygrothermal load of the tubes constructed with the selected lay-ups is calculated for the validation of lay-up designs on the dimensionalstability. Dynamic analysis is also carried out to feature the resonant behaviour. A zig-zag triangular element accurately representing through thickness stress variations for laminated structures is developed in this study and incorporated into the structural and hygrothermal analysis.

  • PDF

Development of Micro Punching System (미세 구멍 펀칭 기구 개발)

  • Joo B. Y.;Jeon B. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.213-216
    • /
    • 2001
  • A micro hole punching system was developed and micro holes of 100m in diameter were successfully made on brass sheets of loom in thickness. A micro punch made of tungsten carbide was designed to withstand the punch load, considering the buckling and the bending moment due to possible misalignment error. The punch was fabricated by the grinding process with diamond wheel. The die was designed considering the punch load and fabricated by micro electrodischarge machining process. In this system the stripper is designed to guide punch tip to minimize the possible misalignment. The punch was installed on a vertical stepper and the die was mounted on an X-Y translation unit. The precision motion controller controlled all motions of the micro hole punching system. In this study technical difficulties and solutions in the micro hole punching process were also discussed.

  • PDF

Conceptual design of cryomodules for RAON

  • Kim, Y.;Lee, M.K.;Kim, W.K.;Jang, H.M.;Choi, C.J.;Jo, Y.W.;Kim, H.J.;Jeon, D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.15-20
    • /
    • 2014
  • The heavy ion accelerator that will be built in Daejeon, Korea utilizes superconducting cavities operating in 2 K. The cavities are QWR (quarter wave resonator), HWR (half wave resonator), SSR1 (sing spoke resonator1) and SSR2. The main role of the cryomodule is supplying thermal insulation for cryogenic operation of the cavities and maintaining cavities' alignment. Thermal and structural consideration such as thermal load by heat leak and heat generation, cryogenic fluid management, thermal contraction, and so on. This paper describes detailed design considerations and current results have being done including thermal load estimation, cryogenic flow piping, pressure relief system, and so on.

Influence of Malalignment on Tibial Post in Total Knee Replacement Using Posterior Stabilized Implant (슬관절 전치환술에서 후방 안정 임플란트의 오정렬이 경골 기둥에 미치는 영향)

  • Kim, Sang-Hoon;Ahn, Ok-Kyun;Bae, Dae-Kyung;Kim, Yoon-Hyuk;Kim, Kyung-Soo;Lee, Soon-Gul
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.108-116
    • /
    • 2007
  • Recently, it has been reported that the posterior stabilized implant, which is clinically used for the total knee replacement (TKR), may have failure risk such as wear or fracture by the contact pressure and stress on the tibial post. The purpose of this study is to investigate the influence of the mal alignment of the posterior stabilized implant on the tibial post by estimating the distributions of contact pressure and von-Mises stress on a tibial post and to analyze the failure risk of the tibial post. Finite element models of a knee joint and an implant were developed from 1mm slices of CT images and 3D CAD software, respectively. The contact pressure and the von-Mises stress applying on the implant were analyzed by the finite element analysis in the neutral alignment as well as the 8 malalignment cases (3 and 5 degrees of valgus and varus angulations, and 2 and 4 degrees of anterior and posterior tilts). Loading condition at the 40% of one whole gait cycle such as 2000N of compressive load, 25N of anterior-posterior load, and 6.5Nm of torque was applied to the TKR models. Both the maximum contact pressure and the maximum von-Mises stress were concentrated on the anterior-medial region of the tibial post regardless of the malalignment, and their magnitudes increased as the degree of the malalignment increased. From present result, it is shown that the malalignment of the implant can influence on the failure risk of the tibial post.

A Fibular Lengthening Osteotomy Combined with Calcaneal Osteotomy for Post-Traumatic Valgus Ankle Arthritis: A Case Report (족관절의 후외상성 외반관절염에 대한 비골연장술 및 종골 절골술: 증례 보고)

  • Lee, Gyu Heon;Suh, Jin Soo;Choi, Jun Young
    • Journal of Korean Foot and Ankle Society
    • /
    • v.26 no.3
    • /
    • pp.143-147
    • /
    • 2022
  • Past research has reported that the common causes of ankle arthritis include trauma, congenital deformity, and degeneration. Among them, fracture-induced post-traumatic arthritis is most common. For patients with ankle fractures, an anatomical reduction is performed through surgical treatment. However, insufficient reduction or malunion of the fracture site may change the alignment of the ankle joint, resulting in valgus or varus deformities. Currently, most operative options for valgus arthritis aim to either restore joint alignment and/or reduce the uneven load on the cartilage. In this report, we would like to share our clinical experience of a patient with posttraumatic valgus ankle arthritis caused by severely comminuted fracture and dislocation. A satisfactory outcome could be obtained with combined fibular lengthening osteotomy and medial displacement calcaneal osteotomy.

Gravity Compensation Techniques for Enhancing Optical Performance in Satellite Multi-band Optical Sensor (위성용 다중대역광학센서의 광학 성능 향상을 위한 자중보상기법)

  • Do-hee Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.127-139
    • /
    • 2024
  • This paper discusses a gravity compensation technique designed to reduce wavefront error caused by gravity during the assembly and alignment of satellite multi-band optical sensor. For this study, the wavefront error caused by gravity was analyzed for the opto-mechanical structure of multi-band optical sensor. Wavefront error, an indicator of optical performance, was computed by using the displacements of optics calculated through structural analysis and optical sensitivity calculated through optical analysis. Since the calculated wavefront error caused by gravity exceeded the allocated budget, the gravity compensation technique was required. This compensation technique reduces wavefront error effectively by applying the compensation load to the appropriate position of the housing tube. This method successfully meets the wavefront error budget for all bands. In the future, a gravity compensation equipment applying this technique will be manufactured and used for assembly and alignment of multi-band optical sensor.

Effects of Vertical Alignment of Leg on the Knee Trajectory and Pedal Force during Pedaling

  • Kim, Daehyeok;Seo, Jeongwoo;Yang, Seungtae;Kang, DongWon;Choi, Jinseung;Kim, Jinhyun;Tack, Gyerae
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.303-308
    • /
    • 2016
  • Objective: This study evaluated the vertical and horizontal forces in the frontal plane acting on a pedal due to the vertical alignment of the lower limbs. Method: Seven male subjects (age: $25.3{\pm} 0.8years$, height: $175.4{\pm}4.7cm$, weight: $74.7{\pm}14.2kg$, foot size: $262.9{\pm}7.6mm$) participated in two 2-minute cycle pedaling tests, with the same load and cadence (60 revolutions per minute) across all subjects. The subject's saddle height was determined by the height when the knee was at $25^{\circ}$ flexion when the pedal crank was at the 6 o'clock position (knee angle method). The horizontal force acting on the pedal, vertical force acting on the pedal in the frontal plane, ratio of the two forces, and knee range of motion in the frontal plane were calculated for four pedaling phases (phase 1: $330{\sim}30^{\circ}$, phase 2: $30{\sim}150^{\circ}$, phase 3: $150{\sim}210^{\circ}$, phase 4: $210{\sim}330^{\circ}$) and the complete pedaling cycle. Results: The range of motion of the knee in the frontal plane was decreased, and the ratio of vertical force to horizontal force and overall pedal force in the complete cycle were increased after vertical alignment. Conclusion: The ratio of vertical force to horizontal force in the frontal plane may be used as an injury prevention index of the lower limb.

Verification of Effective Support Points of Stern Tube Bearing Using Nonlinear Elastic Multi-Support Bearing Elements (비선형 탄성 다점지지 베어링 요소를 이용한 선미관 베어링의 유효지지점 검증)

  • Choung, Joon-Mo;Choe, Ick-Heung;Kim, Kyu-Chang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.479-486
    • /
    • 2005
  • The final goal of shift alignment design is that the bearing reaction forces or mean pressures are within design boundaries for various service conditions of a ship. However, it is found that calculated bearing load can be substantially variable according to the locations of the effective support points of after sterntube bearing which are determined by simple calculation or assumption suggested by classification societies. A new analysis method for shaft alignment calculation is introduced in order to resolve these problems. Key concept of the new method is featured by adopting both nonlinear elastic and multi-support elements to simulate a bearing support Hertz contact theory is basically applied for nonlinear elastic stiffness calculation instead of the projected area method suggested by most of classification societies. Three loading conditions according to the bearing offset and the hydrodynamic moment and twelve models according to the locations of the effective support points of sterntube bearings are prepared to carry out quantitative verifications for an actual shafting system of 8000 TEU class container vessel. It is found that there is relatively large difference between assumed and calculated effective support points.

Unstable Behavior and Critical Buckling Load of a Single-Layer Dome using the Timber Elements (목재를 이용한 단층 지오데식 돔의 불안정 거동과 임계좌굴하중)

  • Hong, Seok-Ho;Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.19-28
    • /
    • 2023
  • Timber structures are susceptible to moisture, contamination, and pest infestation, which can compromise their integrity and pose a significant fire hazard. Despite these drawbacks, timber's lightweight properties, eco-friendliness, and alignment with current architectural trends emphasizing sustainability make it an attractive option for construction. Moreover, timber structures offer economic benefits and provide a natural aesthetic that regulates building temperature and humidity. In recent years, timber domes have gained popularity due to their high recyclability, lightness, and improved fire resistance. Researchers are exploring hybrid timber and steel domes to enhance stability and rigidity. However, shallow dome structures still face challenges related to structural instability. This study investigates stability problems associated with timber domes, the behavior of timber and steel hybrid domes, and the impact of timber member positioning on dome stability and critical load levels. The paper analyzes unstable buckling in single-layer lattice domes using an incremental analysis method. The critical buckling load of the domes is examined based on the arrangement of timber members in the inclined and horizontal directions. The analysis shows that nodal snapping is observed in the case of a concentrated load, whereas snap-back is also observed in the case of a uniform load. Furthermore, the use of inclined timber and horizontal steel members in the lattice dome design provides adequate stability.

Effects of implant alignment and load direction on mandibular bone and implant: finite element analysis (임플란트 배열과 하중 방향이 임플란트와 치조골에 미치는 유한요소 응력분석)

  • Chung, Hyunju;Park, Chan;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.176-182
    • /
    • 2020
  • Purpose: To evaluate the effects of load direction, number of implants, and alignment of implant position on stress distribution in implant, prosthesis, and bone tissue. Materials and Methods: Four 3D models were made to simulate posterior mandible bone block: two implants and 3-unit fixed dental prosthesis (FDP) with a pontic in the center (model M1), two implants and 3-unit FDP with a cantilever pontic at one end (model M2), FDP supported by three implants with straight line placement (model M3) and FDP supported by three implants with staggered implant configuration (model M4). The applied force was 120 N axially or 120 N obliquely. Results: Peak von Mises stresses caused by oblique occlusal force were 3.4 to 5.1 times higher in the implant and 3.5 to 8.3 times higher in the alveolar bone than those stresses caused by axial occlusal force. In model M2, the connector area of the distal cantilever in the prosthesis generated the highest von Mises stresses among all models. With the design of a large number of implants, low stresses were generated. When three implants were placed, there were no significant differences in the magnitude of stress between staggered arrangement and straight arrangement. Conclusion: The effect of staggering alignment on implant stress was negligible. However, the number of implants had a significant effect on stress magnitude.