• Title/Summary/Keyword: LoRa technology

Search Result 105, Processing Time 0.025 seconds

Design and Function Analysis of Dust Measurement Platform based on IoT protocol (사물인터넷 프로토콜 기반의 미세먼지 측정 플랫폼 설계와 기능해석)

  • Cho, Youngchan;Kim, Jeongho
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.79-89
    • /
    • 2021
  • In this paper, the fine dust (PM10) and ultrafine dust (PM2.5) measurement platforms are designed to be mobile and fixed using oneM2M, the international standard for IoT. The fine dust measurement platform is composed and designed with a fine dust measurement device, agent, oneM2M platform, oneM2M IPE, and monitoring system. The main difference between mobile and fixed is that the mobile uses the MQTT protocol for interconnection between devices and services without blind spots based on LTE connection, and the fixed uses the LoRaWAN protocol with low power and wide communication range. Not only fine dust, but also temperature, humidity, atmospheric pressure, volatile organic compounds (VOC), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and noise data related to daily life were collected. The collected sensor values were managed using the common API provided by oneM2M through the agent and oneM2M IPE, and it was designed into four resource types: AE and container. Six functions of operability, flexibility, convenience, safety, reusability, and scalability were analyzed through the fine dust measurement platform design.

Study of IoT Module Package Design Optimization for Drop Testing by Drone (IoT 모듈 패키지 디자인 최적화 및 드론에서의 낙하해석 연구)

  • Jo, Eunsol;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.63-67
    • /
    • 2021
  • In order to detect fires that may not be visible to the naked eye, an IoT module that uses changes in Carbon dioxide (CO2) levels and temperature to effectively identify ambers (dying flames) was developed. Finite element analysis was then used to optimize the packaging for this module. Given the nature of ambers, the low power long range LoRa (Long Range) technology was used in the development of this module. To protect the module, a number of packages were designed, and comparative analysis performed on the stress generated when they fall. The results of which show that Model C showed the lowest stress. In addition, unlike other models in which stress concentration was predicted in the module mounting part of the package, in this model the stress concentration phenomenon was predicted in the wing part. It was therefore determined that this approach is ideal for protecting the internal module, and a package to which this was applied was manufactured.

Development of Portable Atmospheric Environment Measurement System using Low Power Wireless Communication

  • Chae, Soohyeon;Kim, Hack-Yoon;Gim, Jangwon
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.99-109
    • /
    • 2020
  • As environmental pollution has become severe due to the rapid increase in pollutant generation in the air, measurement, collection, and analysis of atmospheric environment information plays an important role. However, it is difficult to measure the high-resolution and real-time atmospheric environment of the cities and tourist spots with high population mobility only by measuring equipment of stationary measuring stations. Therefore, this paper proposes a portable atmospheric environment measurement system for real-time measurement and monitoring of atmospheric environment information. The proposed system is a portable client with a low-power wireless communication method. It is possible to reliably transmit and receive the measured data through a multi-threaded server to monitor the trend of pollutants in the air in real-time.

Lightweight Language Models based on SVD for Document-Grounded Response Generation (SVD에 기반한 모델 경량화를 통한 문서 그라운딩된 응답 생성)

  • Geom Lee;Dea-ryong Seo;Dong-Hyeon Jeon;In-ho Kang;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.638-643
    • /
    • 2023
  • 문서 기반 대화 시스템은 크게 질문으로부터 문서를 검색하는 과정과 응답 텍스트를 생성하는 과정으로 나뉜다. 이러한 대화 시스템의 응답 생성 과정에 디코더 기반 LLM을 사용하기 위해서 사전 학습된 LLM을 미세 조정한다면 많은 메모리, 연산 자원이 소모된다. 본 연구에서는 SVD에 기반한 LLM의 경량화를 시도한다. 사전 학습된 polyglot-ko 모델의 행렬을 SVD로 분해한 뒤, full-fine-tuning 해보고, LoRA를 붙여서 미세 조정 해본 뒤, 원본 모델을 미세 조정한 것과 점수를 비교하고, 정성평가를 수행하여 경량화된 모델의 응답 생성 성능을 평가한다. 문서 기반 대화를 위한 한국어 대화 데이터셋인 KoDoc2Dial에 대하여 평가한다.

  • PDF

Study on Real Time Sensor Monitoring Systems Based on Pulsed Laser for Microplastic Detection in Tap Water (펄스 레이저 기반 담수용 미세 플라스틱 실시간 센서 모니터링 시스템 연구)

  • Han, Seung Heon;Kim, Dae Geun;Jung, Haeng Yun;Kim, Seon Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.294-298
    • /
    • 2019
  • Pulsed laser-based optical sensor monitoring systems for real time microplastic particle counting are proposed and developed in this study. To develop our real time monitoring system, we used a 450 nm pulsed laser and a photomultiplier with very high quantum efficiency. First, we demonstrated that the microplastic particle counting system could detect standard micro bead samples of 100, 250, and $500{\mu}m$ in river water. We then performed research concerning pulsed laser-based optical spectral sensor systems for real time microplastic monitoring. Additionally, we demonstrated that the real time microplastic remote monitoring system using LoRa communications could detect microplastic in the tap water resource protection area.

Targeting the epitope spreader Pep19 by naïve human CD45RA+ regulatory T cells dictates a distinct suppressive T cell fate in a novel form of immunotherapy

  • Kim, Hyun-Joo;Cha, Gil Sun;Joo, Ji-Young;Lee, Juyoun;Kim, Sung-Jo;Lee, Jeongae;Park, So Youn;Choi, Jeomil
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.5
    • /
    • pp.292-311
    • /
    • 2017
  • Purpose: Beyond the limited scope of non-specific polyclonal regulatory T cell (Treg)-based immunotherapy, which depends largely on serendipity, the present study explored a target Treg subset appropriate for the delivery of a novel epitope spreader Pep19 antigen as part of a sophisticated form of immunotherapy with defined antigen specificity that induces immune tolerance. Methods: Human polyclonal $CD4^+CD25^+CD127^{lo-}$ Tregs (127-Tregs) and $na\ddot{i}ve$ $CD4^+CD25^+CD45RA^+$ Tregs (45RA-Tregs) were isolated and were stimulated with target peptide 19 (Pep19)-pulsed dendritic cells in a tolerogenic milieu followed by ex vivo expansion. Low-dose interleukin-2 (IL-2) and rapamycin were added to selectively exclude the outgrowth of contaminating effector T cells (Teffs). The following parameters were investigated in the expanded antigen-specific Tregs: the distinct expression of the immunosuppressive Treg marker Foxp3, epigenetic stability (demethylation in the Treg-specific demethylated region), the suppression of Teffs, expression of the homing receptors CD62L/CCR7, and CD95L-mediated apoptosis. The expanded Tregs were adoptively transferred into an $NOD/scid/IL-2R{\gamma}^{-/-}$ mouse model of collagen-induced arthritis. Results: Epitope-spreader Pep19 targeting by 45RA-Tregs led to an outstanding in vitro suppressive T cell fate characterized by robust ex vivo expansion, the salient expression of Foxp3, high epigenetic stability, enhanced T cell suppression, modest expression of CD62L/CCR7, and higher resistance to CD95L-mediated apoptosis. After adoptive transfer, the distinct fate of these T cells demonstrated a potent in vivo immunotherapeutic capability, as indicated by the complete elimination of footpad swelling, prolonged survival, minimal histopathological changes, and preferential localization of $CD4^+CD25^+$ Tregs at the articular joints in a mechanistic and orchestrated way. Conclusions: We propose human $na\ddot{i}ve$ $CD4^+CD25^+CD45RA^+$ Tregs and the epitope spreader Pep19 as cellular and molecular targets for a novel antigen-specific Treg-based vaccination against collagen-induced arthritis.

Smart Escape Support System for Passenger Ship : Active Dynamic Signage & Real-time Escape Routing (능동형 피난유도기기와 실시간 피난경로생성 기술을 적용한 여객선 스마트 인명대피 시스템)

  • Choi, James;Yang, Chan-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.79-85
    • /
    • 2017
  • It is critical that passengers should be given timely and correct escape or evacuation guidance from captain and crews when there are hazardous situations in a ship. Otherwise the consequences could be disastrous as "SEWOL Ferry" the South Korean passenger ship which sank in southern coastal area on 16th April 2014. Due to the captain's delayed evacuation decision and lack of sufficient number of crews to guide passengers' evacuation, the accident recorded many casualties, most of whom were high school students (302 passengers sank down with the ship while 172 rescued). Building a passenger ship with well-designed physical escape routes is one thing and guiding passengers to those escape routes in real disaster situation is another. Passengers get panic and move to a wrong direction, bottleneck makes situation worse, and even crews get panic also - passive static escape route signage and small number of trained crews might not be enough to take care of them. SESS (Smart Escape Support System) is being developed sponsored by South Korea Ministry of Ocean and Fisheries starting from 2016 with 4 years of roadmap. SESS comprises multiple active dynamic signage devices which communicate with real-time escape routing server software via LoRa (Long Range) proprietary wireless network.

  • PDF

YOLO-based Traffic Signal Detection for Identifying the Violation of Motorbike Riders (YOLO 기반의 교통 신호등 인식을 통한 오토바이 운전자의 신호 위반 여부 확인)

  • Wahyutama, Aria Bisma;Hwang, Mintae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.141-143
    • /
    • 2022
  • This paper presented a new technology to identify traffic violations of motorbike riders by detecting the traffic signal using You Only Look Once (YOLO) object detection. The hardware module that is mounted on the front of the motorbike consists of Raspberry Pi with a camera to run the YOLO object detection, a GPS module to acquire the motorcycle's coordinate, and a LoRa communication module to send the data to a cloud DB. The main goal of the software is to determine whether a motorbike has violated a traffic signal. This paper proposes a function to recognize the red traffic signal colour with its movement inside the camera angle and determine that the traffic signal violation happens if the traffic signal is moving to the right direction (the rider turns left) or moving to the top direction (the riders goes straight). Furthermore, if a motorbike rider is violated the signal, the rider's personal information (name, mobile phone number, etc), the snapshot of the violation situation, rider's location, and date/time will be sent to a cloud DB. The violation information will be delivered to the driver's smartphone as a push notification and the local police station to be used for issuing violation tickets, which is expected to prevent motorbike riders from violating traffic signals.

  • PDF

A wireless sensor with data-fusion algorithm for structural tilt measurement

  • Dan Li;Guangwei Zhang;Ziyang Su;Jian Zhang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.301-309
    • /
    • 2023
  • Tilt is a key indicator of structural safety. Real-time monitoring of tilt responses helps to evaluate structural condition, enable cost-effective maintenance, and enhance lifetime resilience. This paper presents a prototype wireless sensing system for structural tilt measurement. Long range (LoRa) technology is adopted by the sensing system to offer long-range wireless communication with low power consumption. The sensor integrates a gyroscope and an accelerometer as the sensing module. Although tilt can be estimated from the gyroscope or the accelerometer measurements, these estimates suffer from either drift issue or high noise. To address this challenging issue and obtain more reliable tilt results, two sensor fusion algorithms, the complementary filter and the Kalman filter, are investigated to fully exploit the advantages of both gyroscope and accelerometer measurements. Numerical simulation is carried out to validate and compare the sensor fusion algorithms. Laboratory experiment is conducted on a simply supported beam under moving vehicle load to further investigate the performance of the proposed wireless tilt sensing system.

Research Regarding Filter Composition and Motor control for Yagi-Antenna Remote Tracking System (야기 안테나가 적용된 원격추적시스템을 위한 필터구성 및 모터 제어에 관한 연구)

  • You, Chong-Ho;Song, Beob-Seong;Hwang, In-Gab
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1039-1046
    • /
    • 2016
  • To study a habit and life patten of a wild animal, this paper do a research on the location tracing system of wild animal by yagi-antenna low pass filter, angle tracking technology. Commonly, VHF Radio Telemetry is used for the location tracing system of wild animal. Considering movement, Previous yagi-antenna has 4-element and has advantage of portability but the other advantages are small and preference is weak. To make the advantage of yagi-antenna higher than previous one, Supposed technology adapt to 6-element and make out Narrow space yagi-antenna technology. Also, It supposes that AOA (:Angle of arrival) technology is applied to detecting technology for a close direction from received signal. Based on this study suggest that position tracing technology is so as to figure out a life patten and habit of a wild animal which live in a certain area.