• 제목/요약/키워드: Living modified organism (LMO)

검색결과 24건 처리시간 0.023초

Transgenic poplar expressing AtNDPK2 exhibits enhanced biomass in the LMO field

  • An, Chul-Han;Kim, Yun-Hee;Park, Sung-Chul;Jeong, Jae-Cheol;Lee, Haeng-Soon;Choi, Yong-Im;Noh, Eun-Woon;Yun, Dae-Jin;Kim, Se-Bin;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • 제38권3호
    • /
    • pp.228-233
    • /
    • 2011
  • Nucleoside diphosphate kinase 2 (NDPK2) is known to regulate the expression of antioxidant genes and auxin-responsive genes in plants. Previously, it was noted that the overexpression of Arabidopsis NDPK2 (AtNDPK2) under the control of an oxidative stress-inducible SWPA2 promoter in transgenic poplar (Populus alba ${\times}$ P. tremular var. glandulosa) plants (referred to as SN plants) enhanced tolerance to oxidative stress and improved growth (Plant Biotechnol J 9: 34-347, 2011). In this study, growth of transgenic poplar was assessed under living modified organism (LMO) field conditions in terms of biomass in the next year. The growth of transgenic poplar plants increased in comparison with non-transgenic plants. The SN3 and SN4 transgenic lines had 1.6 and 1.2 times higher dry weight in stems than non-transgenic plants at 6 months after planting, respectively. Transgenic poplar also exhibited increased transcript levels of auxin-response genes such as IAA1, IAA2, IAA5 and IAA6. These results suggest that enhanced AtNDPK2 expression increases plant biomass in transgenic poplar through the regulation of auxin-response genes.

Analysis of Arthropod Communities in Sunflower-cultivated Fields to Develop Risk Assessment Guidelines for LMO Used for Environmental Remediation

  • Kim, Dong Eon;Kim, Dayeong;Ban, Young-Gyu;Lee, Minji;Lee, Heejo;Jo, Aram;Han, Sung Min;Lee, Jung Ro;Nam, Kyong-Hee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제2권2호
    • /
    • pp.129-138
    • /
    • 2021
  • Living modified organisms (LMOs) are managed by seven government agencies according to their use in South Korea. The Ministry of Environment is responsible for LMOs used for environmental remediation. This study aimed to develop guidelines for assessing potential risks posed by transgenic plants used for remediation to insect ecosystems by investigating arthropod communities in sunflower fields. A total of 2,350 insects and spiders belonging to 134 species of 10 orders and 71 families were collected from sunflower fields over four growth stages ranging from anthesis to seed maturity. At the R3 phase of flower-bud formation, Chironomidae sp. of a decomposer insect guild presented the highest density, while Apis mellifera of a pollinator guild was the most abundant in the R5.8 phase of flowering. During the R7 seed-filling phase and the R9 phase of seed maturity, herbivorous Pochazia shantungensis predominated. During the R9 phase, richness and diversity indices of arthropod communities were distinctly lower whereas their dominance indices were significantly higher than those at other phases. In addition, the composition of arthropod communities was strongly correlated not only with the sampling date, but also with the sampling method depending on the growth stage of sunflowers. Our results suggest that appropriate sampling timing and methods should be considered in advance and that long-term field trials that cover a variety of environmental conditions should be carried out to evaluate potential risks to insect ecosystems.

비타민 E 강화콩 재배가 곤충다양성에 미치는 영향 (Effects of Vitamin E enhanced transgenic soybean cultivation on insect diversity)

  • 오성덕;서상재;박수윤;이기종;손수인;윤도원;장안철
    • 한국육종학회지
    • /
    • 제49권3호
    • /
    • pp.129-140
    • /
    • 2017
  • 본 연구는 들깨 유래 ${\gamma}-TMT$ (${\gamma}$-tocopherol methyltransferase) 효소 유전자를 종자에서 발현시켜 ${\alpha}$-토코페롤 함량을 증가시킨 비타민 E 강화콩(1208-3-30)의 환경위해성 평가에 대한 프로토콜 및 가이드라인을 개발하고자 수행하였다. 국립농업과학원 LMO 격리포장에서 비타민 E 강화콩(1208-3-30)과 모품종인 Williams 82 및 재배 품종인 서리태를 재배하고, 성장기와 수확 직전까지의 기간 동안 거미류를 포함한 곤충류의 다양성을 조사하였다. 조사기간 동안 채집된 개체들은 기능별로 천적군, 해충군, 기타 곤충군으로 크게 구분하여 계수하였으며, 총 8목 42과 77종 17,717개체가 채집되었다. 조사된 개체군의 천적군, 해충군, 기타 곤충의 밀도는 비타민 E 강화콩(1208-3-30)과 모품종인 Williams 82 간에는 유사한 발생을 보였으나, 재배 품종인 서리태는 해충군과 천적군의 개체 밀도에서 비타민 E 강화콩과 Williams 82 모두와 통계적인 유의차가를 보였다. 기타 곤충에서는 유의적 차이를 보이지 않았다. 시기별 곤충 발생 양상에서도 비타민 E 강화콩(1208-3-30)과 모품종인 Williams 82 간에는 통계적인 유의성을 나타나지 않았으나, 비타민 E 강화콩과 재배품종인 서리태에서는 9월 10일과 9월 24일에 통계적인 유의성을 보였다. 이러한 차이는 서리태와 Williams 82 간에도 동일하게 나타났다. 채집된 총 77종의 곤충상 데이터를 주성분 분석을 한 결과, Williams 82와 비타민 E 강화콩의 재배지의 곤충상은 국내에서 재배하는 대표적인 콩 품종인 서리태를 재배한 포장에서 나타나는 곤충상과는 확연하게 구분이 되었으며, 이는 특이적인 곤충상의 변화에 따른 결과가 아니고 재배한 콩의 품종인 서리태와 Williams 82 간의 차이에 의한 결과임을 확인하였다. 결과적으로, ${\gamma}-TMT$ (${\gamma}$-tocopherol methyltransferase) 유전자가 도입된 비타민 E 강화콩의 재배 시에 해충 및 천적의 개체군 밀도와 발생양상은 모품종인 Williams 82에서와 차이가 없는 것으로 조사되었다.

Influence of β-carotene enhanced transgenic soybean cultivation on the diversity of non-target arthropods in Korea for three years

  • Sung-Dug Oh;Eunji Bae;Soo-Yun Park;Seong-Kon Lee;Doh-Won Yun;Kihun Ha;Minwook Kim;Yeongjin Son;Chang Uk Eun;Young-Kun Kim;Junho Lee;Dongmin Kim;Donguk Kim;Jongwon Kim;Sang Jae Suh
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.719-736
    • /
    • 2022
  • Environmental risk assessment of living modified (LM) crops is essential for their cultivation. In this study, we cultivated β-carotene enhanced transgenic soybean (LM soybean) and non-LM soybean (Gwangan) in living modified organism (LMO) isolated fields, and investigated changes in the insect fauna using three types of collection methods for three years. In total, 331,483 individual insects and arachnids, representing 82 families in 14 orders, were captured during the study. Totals of 166,518 and 164,965 individual insects and arachnids were collected from LM soybean and Gwangan, respectively. Throughout the study, although there were differences between the investigation year, region, and methods, there were no significant differences between the population densities of insect pests, natural enemies, and other insects on LM soybean and non-LM soybean. Also, there were no statistically significant differences between varieties in the results of the species diversity analysis. The data on insect species population densities were subjected to multidimensional scaling (MDS), which did not distinguish between the two varieties, LM soybean and the non-LM soybean, in all cultivated fields. However, the results of the MDS analysis were completely divided into six groups based on the yearly survey areas. These results provided the insect diversity for an environmental risk assessment of LM soybean and suggested that the guideline could be useful to detect LM crops.