• Title/Summary/Keyword: Liver Segmentation Using 2 Points

Search Result 3, Processing Time 0.016 seconds

Automatic Liver Segmentation Method on MR Images using Normalized Gradient Magnitude Image (MR 영상에서 정규화된 기울기 크기 영상을 이용한 자동 간 분할 기법)

  • Lee, Jeong-Jin;Kim, Kyoung-Won;Lee, Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1698-1705
    • /
    • 2010
  • In this paper, we propose a fast liver segmentation method from magnetic resonance(MR) images. Our method efficiently divides a MR image into a set of discrete objects, and boundaries based on the normalized gradient magnitude information. Then, the objects belonging to the liver are detected by using 2D seeded region growing with seed points, which are extracted from the segmented liver region of the slice immediately above or below the current slice. Finally, rolling ball algorithm, and connected component analysis minimizes false positive error near the liver boundaries. Our method was validated by twenty data sets and the results were compared with the manually segmented result. The average volumetric overlap error was 5.2%, and average absolute volumetric measurement error was 1.9%. The average processing time for segmenting one data set was about three seconds. Our method could be used for computer-aided liver diagnosis, which requires a fast and accurate segmentation of liver.

Effective Object Recognition based on Physical Theory in Medical Image Processing (의료 영상처리에서의 물리적 이론을 활용한 객체 유효 인식 방법)

  • Eun, Sung-Jong;WhangBo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.63-70
    • /
    • 2012
  • In medical image processing field, object recognition is usually processed based on region segmentation algorithm. Region segmentation in the computing field is carried out by computerized processing of various input information such as brightness, shape, and pattern analysis. If the information mentioned does not make sense, however, many limitations could occur with region segmentation during computer processing. Therefore, this paper suggests effective region segmentation method based on R2-map information within the magnetic resonance (MR) theory. In this study, the experiment had been conducted using images including the liver region and by setting up feature points of R2-map as seed points for 2D region growing and final boundary correction to enable region segmentation even when the border line was not clear. As a result, an average area difference of 7.5%, which was higher than the accuracy of conventional exist region segmentation algorithm, was obtained.

Liver Splitting Using 2 Points for Liver Graft Volumetry (간 이식편의 체적 예측을 위한 2점 이용 간 분리)

  • Seo, Jeong-Joo;Park, Jong-Won
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.123-126
    • /
    • 2012
  • This paper proposed a method to separate a liver into left and right liver lobes for simple and exact volumetry of the river graft at abdominal MDCT(Multi-Detector Computed Tomography) image before the living donor liver transplantation. A medical team can evaluate an accurate river graft with minimized interaction between the team and a system using this algorithm for ensuring donor's and recipient's safe. On the image of segmented liver, 2 points(PMHV: a point in Middle Hepatic Vein and PPV: a point at the beginning of right branch of Portal Vein) are selected to separate a liver into left and right liver lobes. Middle hepatic vein is automatically segmented using PMHV, and the cutting line is decided on the basis of segmented Middle Hepatic Vein. A liver is separated on connecting the cutting line and PPV. The volume and ratio of the river graft are estimated. The volume estimated using 2 points are compared with a manual volume that diagnostic radiologist processed and estimated and the weight measured during surgery to support proof of exact volume. The mean ${\pm}$ standard deviation of the differences between the actual weights and the estimated volumes was $162.38cm^3{\pm}124.39$ in the case of manual segmentation and $107.69cm^3{\pm}97.24$ in the case of 2 points method. The correlation coefficient between the actual weight and the manually estimated volume is 0.79, and the correlation coefficient between the actual weight and the volume estimated using 2 points is 0.87. After selection the 2 points, the time involved in separation a liver into left and right river lobe and volumetry of them is measured for confirmation that the algorithm can be used on real time during surgery. The mean ${\pm}$ standard deviation of the process time is $57.28sec{\pm}32.81$ per 1 data set ($149.17pages{\pm}55.92$).