• Title/Summary/Keyword: Liver Diseases

Search Result 1,298, Processing Time 0.032 seconds

A Study on Monitoring of Liver Function Based on Voice Signal Analysis for u-Health System (u-Health 시스템을 위한 음성신호 분석 기반의 간 기능 모니터링에 관한 연구)

  • Kim, Bong-Hyun;Cho, Dong-Uk
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.389-396
    • /
    • 2011
  • There is getting worse to various liver diseases due to change in eating habits, stress, alcohol etc in modern society. Therefore, we proposed methodology to diagnose early for liver disease to study the influence on voice in liver diseases. To this end, we carried out experiment to apply parameter of voice analysis to collect each voice inpatients and patients by treatment of liver diseases patients. Particularly, we carried out experiment to apply element value of pronunciation and the third formant frequency bandwidths about velar sounds associated liver in oriental medicine, then to produce objective index resonance cavity and influence vocalization in liver diseases. In addition, we carried out to study about design of system to monitoring a liver function in u-Health environment based on result by experiment.

Identification of key genes and functional enrichment analysis of liver fibrosis in nonalcoholic fatty liver disease through weighted gene co-expression network analysis

  • Yue Hu;Jun Zhou
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.45.1-45.11
    • /
    • 2023
  • Nonalcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease, with severity levels ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). The extent of liver fibrosis indicates the severity of NASH and the risk of liver cancer. However, the mechanism underlying NASH development, which is important for early screening and intervention, remains unclear. Weighted gene co-expression network analysis (WGCNA) is a useful method for identifying hub genes and screening specific targets for diseases. In this study, we utilized an mRNA dataset of the liver tissues of patients with NASH and conducted WGCNA for various stages of liver fibrosis. Subsequently, we employed two additional mRNA datasets for validation purposes. Gene set enrichment analysis (GSEA) was conducted to analyze gene function enrichment. Through WGCNA and subsequent analyses, complemented by validation using two additional datasets, we identified five genes (BICC1, C7, EFEMP1, LUM, and STMN2) as hub genes. GSEA analysis indicated that gene sets associated with liver metabolism and cholesterol homeostasis were uniformly downregulated. BICC1, C7, EFEMP1, LUM, and STMN2 were identified as hub genes of NASH, and were all related to liver metabolism, NAFLD, NASH, and related diseases. These hub genes might serve as potential targets for the early screening and treatment of NASH.

Coronavirus Disease 2019-Liver Injury-Literature Review and Guidelines Based on the Recommendations of Hepatological Societies

  • Pawlowska, Joanna;Lebensztejn, Dariusz M.;Jankowska, Irena
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2021
  • The aim of our paper was to present current knowledge, review literature and available practice guidelines of international hepatological associations regarding the effect of severe acute respiratory syndrome coronavirus 2 coronavirus on the liver, patients with underline liver disease, awaiting on liver transplantation (LTx) or being after LTx in the pandemic coronavirus disease 2019 area.

Pharmacological potential of ginseng and ginsenosides in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

  • Young-Su Yi
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.122-128
    • /
    • 2024
  • Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by hepatic fat accumulation, while nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by hepatic inflammation, fibrosis, and liver injury, resulting in liver cirrhosis and hepatocellular carcinoma (HCC). Given the evidence that ginseng and its major bioactive components, ginsenosides, have potent anti-adipogenic, anti-inflammatory, anti-oxidative, and anti-fibrogenic effects, the pharmacological effect of ginseng and ginsenosides on NAFLD and NASH is noteworthy. Furthermore, numerous studies have successfully demonstrated the protective effect of ginseng on these diseases, as well as the underlying mechanisms in animal disease models and cells, such as hepatocytes and macrophages. This review discusses recent studies that explore the pharmacological roles of ginseng and ginsenosides in NAFLD and NASH and highlights their potential as agents to prevent and treat NAFLD, NASH, and liver diseases caused by hepatic steatosis and inflammation.

Potential Roles of Hedgehog and Estrogen in Regulating the Progression of Fatty Liver Disease (지방간 진행 조절에 대한 헤지호그와 에스트로겐의 잠재적 역할)

  • Hyun, Jeong-Eun;Jung, Young-Mi
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1795-1803
    • /
    • 2011
  • Non-alcoholic fatty liver disease accompanies the rise in the prevalence of obesity, diabetes and the tendency toward high-fat dietary habits. Specifically, the higher prevalence of non-alcoholic fatty liver disease in men and postmenopausal women seems to be caused by the protective effects of estrogen against liver fibrosis, or lack thereof. There are no effective preventive therapies for liver diseases because the mechanisms underlying the progression of fatty liver diseases to chronic liver diseases and the protective effects of estrogen against fibrogenesis remain unclear. Recently, it has been reported that the hedgehog signaling pathway plays an important role in the progression of chronic liver diseases. Hedgehog, a morphogen regulating embryonic liver development, is expressed in injured livers but not in adult healthy livers. The level of hedgehog expression parallels the stages of liver diseases. Hedgehog induces myofibroblast activation and hepatic progenitor cell proliferation and leads to excessive liver fibrosis, whereas estrogen inhibits the activation of hepatic stellate cells to myofibroblasts and prevents liver fibrosis. Although the mechanism underlying the opposing actions of hedgehog and estrogen on liver fibrosis remain unclear, the suppressive effects of estrogen on the expression of osteopontin, a profibrogenic extracellular matrix protein and cytokine, and the inductive effects of hedgehog on osteopontin transcription suggest that estrogen and hedgehog are associated with liver fibrosis regulation. Therefore, further research on the estrogen-mediated regulatory mechanisms underlying the hedgehog-signaling pathway can identify the mechanism underlying liver fibrogenesis and contribute to developing therapies for preventing the progression of fibrosis to chronic liver diseases.

Cutaneous Manifestations Associated with Liver Diseases (간질환에 동반된 피부증상에 관한 연구)

  • Cho, Young-Sup;Choi, Jong-Soo;Kim, Ki-Hong;Lee, Heon-Ju
    • Journal of Yeungnam Medical Science
    • /
    • v.2 no.1
    • /
    • pp.167-174
    • /
    • 1985
  • It has been well recognized that the various cutaneous manifestations associated with the liver diseases. A clinical study was made of 255 patients (AVH 84, LC 70, HC 41, CAH 26, CPH 23, AH11) with the liver diseases at Yeungnam University Hospital during the periods from May to November, 1985. The authors classified the cutaneous manifestations into 7 groups according to pathogenesis, and compared them with other reports. The results were as follows; 1. In 255 patients with various liver diseases, 161 patients (63%) showed the various cutaneous manifestations. 2. The various cutaneous manifestations were jaundice and/or pruritus (43.1%), vascular changes (39.6%), allergic manifestations (10.6%), nail changes (5.1%), hormone-induced changes (4.3%), pigmentary changes (3.5%) and others (2.4%) in that order. 3. Cutaneous manifestations were associated most frequently with liver cirrhosis (1.6 groups) and the least with chronic active hepatitis (0.7 group). 4. Allergic manifestations were seen mainly in patients with acute viral hepatitis. Three patients showed the serum sickness-like prodrome. 5. The other cutaneous manifestations were seen mainly in patients with chronic liver diseases.

  • PDF

Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes

  • Seung-Hwan Seo;Ji-Eun Lee;Do-Won Ham;Eun-Hee Shin
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.30-41
    • /
    • 2024
  • The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.

Polyploidization of Hepatocytes: Insights into the Pathogenesis of Liver Diseases

  • Kim, Ju-Yeon;Choi, Haena;Kim, Hyeon-Ji;Jee, Yelin;Noh, Minsoo;Lee, Mi-Ock
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.391-398
    • /
    • 2022
  • Polyploidization is a process by which cells are induced to possess more than two sets of chromosomes. Although polyploidization is not frequent in mammals, it is closely associated with development and differentiation of specific tissues and organs. The liver is one of the mammalian organs that displays ploidy dynamics in physiological homeostasis during its development. The ratio of polyploid hepatocytes increases significantly in response to hepatic injury from aging, viral infection, iron overload, surgical resection, or metabolic overload, such as that from non-alcoholic fatty liver diseases (NAFLDs). One of the unique features of NAFLD is the marked heterogeneity of hepatocyte nuclear size, which is strongly associated with an adverse liver-related outcome, such as hepatocellular carcinoma, liver transplantation, and liver-related death. Thus, hepatic polyploidization has been suggested as a potential driver in the progression of NAFLDs that are involved in the control of the multiple pathogenicity of the diseases. However, the importance of polyploidy in diverse pathophysiological contexts remains elusive. Recently, several studies reported successful improvement of symptoms of NAFLDs by reducing pathological polyploidy or by controlling cell cycle progression in animal models, suggesting that better understanding the mechanisms of pathological hepatic polyploidy may provide insights into the treatment of hepatic disorders.

Therapeutic Effects of Korean Red Ginseng Extract in Egyptian Patients with Chronic Liver Diseases

  • Abdel-Wahhab, Mosaad A.;Gamil, Khaled;El-Kady, Ahmed A.;El-Nekeety, Aziza A.;Naguib, Khayria M.
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.69-79
    • /
    • 2011
  • Hepatocellular carcinoma (HCC) is the fi fth most common malignancy in the world and complicates liver cirrhosis related to hepatitis C virus (HCV) in many cases. We evaluated the therapeutic effect of Korean red ginseng extract (KGE) in patients with chronic liver diseases. Thirty male and female patients with HCC and another thirty with liver cirrhosis were included. Each category was divided into two groups; the first was used as control group, and received medical therapy only and the second group received the medical therapy supplemented with KGE capsules. The treated group with HCC received three KGE capsules/day (900 mg) while the treated group with HCV received two KGE capsules/day (600 mg) for 11 weeks along with their medical therapy. All patients were subjected to clinical examination and laboratory investigations, including liver function tests (at baseline, after 6 weeks of treatment and at the end of the study) and abdominal ultrasonography. Patients showing focal hepatic lesions were subjected to triphasic spiral abdominal computerized tomography and alpha-fetoprotein (AFP). HCV RNA was determined quantitatively by Roche for patients in the HCV group. Results showed that the medical therapy alone failed to normalize the liver enzymes or decrease the virus concentration. KGE administration induced a significant improvement in liver function tests, decreased the tumor marker (AFP) levels, and decreased the viral titers in HCV patients. Thus, KGE demonstrated powerful therapeutic effects against HCV and liver cancer.

Mitophagy: Therapeutic Potentials for Liver Disease and Beyond

  • Lee, Sooyeon;Kim, Jae-Sung
    • Toxicological Research
    • /
    • v.30 no.4
    • /
    • pp.243-250
    • /
    • 2014
  • Mitochondrial integrity is critical for maintaining proper cellular functions. A key aspect of regulating mitochondrial homeostasis is removing damaged mitochondria through autophagy, a process called mitophagy. Autophagy dysfunction in various disease states can inactivate mitophagy and cause cell death, and defects in mitophagy are becoming increasingly recognized in a wide range of diseases from liver injuries to neurodegenerative diseases. Here we highlight our current knowledge on the mechanisms of mitophagy, and discuss how alterations in mitophagy contribute to disease pathogenesis. We also discuss mitochondrial dynamics and potential interactions between mitochondrial fusion, fission and mitophagy.