• 제목/요약/키워드: Lithium-sulfur battery

검색결과 37건 처리시간 0.023초

Effect of Preparation Parameters of Sulfur Cathodes on Electrochemical Properties of Lithium Sulfur Battery

  • Zhao, Xiaohui;Kim, Dul-Sun;Ahn, Hyo-Jun;Kim, Ki-Won;Jin, Chang-Soo;Ahn, Jou-Hyeon
    • 전기화학회지
    • /
    • 제13권3호
    • /
    • pp.169-174
    • /
    • 2010
  • Sulfur cathodes were prepared by ball milling method with different types of electronic conductors and binders in different ball milling time. The sulfur cell with a cathode prepared in 45 min ball milling time gave an initial discharge capacity of 794mAh/g with Super-P as an electronic conductor and poly(vinylidene fluoride) as a binder. The cathode with multi-walled carbon nanotube as an electronic conductor showed an initial discharge capacity of 944 mAh/g and a discharge capacity of 300 mAh/g after 20 cycles. Cathodes with poly(ethylene oxide) and poly(vinylidene fluoride) as binders showed different cycle performance.

Study on electrochemical performances of sulfur-containing graphene nanosheets electrodes for lithium-sulfur cells

  • Son, Ki-Soo;Kim, Seok
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.113-116
    • /
    • 2014
  • Due to their morphology, electrochemical stability, and function as a conducting carbon matrix, graphene nanosheets (GNS) have been studied for their potential roles in improving the performance of sulfur cathodes. In this study, a GNS/sulfur (GNS/S) composite was prepared using the infiltration method with organic solvent. The structure, morphology and crystallinity of the composites were examined using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The electrochemical properties were also characterized using cyclic voltammetry (CV). The CV data revealed that the GNS/S composites exhibited enhanced specific-current density and ~10% higher capacity, in comparison with the S-containing, activated-carbon samples. The composite electrode also showed better cycling performance for multiple charge/discharge cycles. The improvement in the capacity and cycling stability of the GNS/S composite electrode is probably related to the fact that the graphene in the composite improves conductivity and that the graphene is well dispersed in the composites.

리튬 황 전지용 Sponge 형태의 S@ZIF 67/rGO 양극재의 전기화학 특성 분석 (The Electrochemical Properties of Sponge Type S@ZIF67/rGO as the Cathode Material for Lithium Sulfur Batteries)

  • 서채린;김성훈;안욱
    • 전기화학회지
    • /
    • 제27권1호
    • /
    • pp.47-54
    • /
    • 2024
  • 본 연구에서는 유황의 절연 특성 및 리튬 폴리 설파이드 용출로 인해 전지 수명 저하를 최소화하기 위해 ZIF67/rGO를 사용하였다. rGO로 포장이 된 ZIF67는 탄소 스펀지 내에 공간을 더 많이 만들어주며, 다량의 유황을 보관할 수 있다. 유황@ZIF67/rGO 복합체를 합성하고, 스펀지 형태로 제조함으로써 유황의 담지 능력을 향상시켰다. 그 결과로서 높은 초기용량을 보였으며, 약 1093 mAh g-1의 값을 나타내며 100사이클 후에 84%의 용량유지율을 보임을 확인하였다. 코발트와 탄소의 복합화를 통하여 유황과의 상호작용이 높아 ZIF67/rGO는 리튬유황전지의 양극 활물질인 유황을 담지하는 담지체로서의 높은 성능을 나타남을 확인하였으며, 높은 초기용량과 용량유지율이 개선되었음을 확인하였다.

Exploiting Natural Diatom Shells as an Affordable Polar Host for Sulfur in Li-S Batteries

  • Hyean-Yeol Park;Sun Hyu Kim;Jeong-Hoon Yu;Ji Eun Kwon;Ji Yang Lim;Si Won Choi;Jong-Sung Yu;Yongju Jung
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.198-206
    • /
    • 2024
  • Given the high theoretical capacity (1,675 mAh g-1) and the inherent affordability and ubiquity of elemental sulfur, it stands out as a prominent cathode material for advanced lithium metal batteries. Traditionally, sulfur was sequestered within conductive porous carbons, rooted in the understanding that their inherent conductivity could offset sulfur's non-conductive nature. This study, however, pivots toward a transformative approach by utilizing diatom shell (DS, diatomite)-a naturally abundant and economically viable siliceous mineral-as a sulfur host. This approach enabled the development of a sulfurlayered diatomite/S composite (DS/S) for cathodic applications. Even in the face of the insulating nature of both diatomite and sulfur, the DS/S composite displayed vigorous participation in the electrochemical conversion process. Furthermore, this composite substantially curbed the loss of soluble polysulfides and minimized structural wear during cycling. As a testament to its efficacy, our Li-S battery, integrating this composite, exhibited an excellent cycling performance: a specific capacity of 732 mAh g-1 after 100 cycles and a robust 77% capacity retention. These findings challenge the erstwhile conviction of requiring a conductive host for sulfur. Owing to diatomite's hierarchical porous architecture, eco-friendliness, and accessibility, the DS/S electrode boasts optimal sulfur utilization, elevated specific capacity, enhanced rate capabilities at intensified C rates, and steadfast cycling stability that underscore its vast commercial promise.

전기차와 ESS용 이차전지 시장의 현재와 미래에 대한 기술경제적 분석 (Techno-economic Analysis on the Present and Future of Secondary Battery Market for Electric Vehicles and ESS)

  • 이정승;김수경
    • Journal of Information Technology Applications and Management
    • /
    • 제30권1호
    • /
    • pp.1-9
    • /
    • 2023
  • Interest in the future of the battery market is growing as Tesla announces plans to increase production of electric vehicles and to produce batteries. Tesla announced an action plan to reduce battery prices by 56% through 'Battery Day', which included expansion of factories to internalize batteries and improvement of materials and production technology. In the trend of automobile electrification, the expansion of the battery market, which accounts for 40% of the cost of electric vehicles, is inevitable, and the size of the electric vehicle battery market in 2026 is expected to increase more than five times compared to 2016. With the development of materials and process technology, the energy density of electric vehicle batteries is increasing while the price is decreasing. Soon, electric vehicles and internal combustion locomotives are expected to compete on the same line. Recently, the mileage of electric vehicles is approaching that of an internal combustion locomotive due to the installation of high-capacity batteries. In the EV battery market, Korean, Chinese and Japanese companies are fiercely competing. Based on market share in the first half of 2020, LG Chem, CATL, and Panasonic are leading the EV battery supply, and the top 10 companies included 3 Korean companies, 5 Chinese companies, and 2 Japanese companies. All-solid, lithium-sulfur, sodium-ion, and lithium air batteries are being discussed as the next-generation batteries after lithium-ion, among which all-solid-state batteries are the most active. All-solid-state batteries can dramatically improve stability and charging speed by using a solid electrolyte, and are excellent in terms of technology readiness level (TRL) among various technology alternatives. In order to increase the competitiveness of the battery industry in the future, efforts to increase the productivity and economy of electric vehicle batteries are also required along with the development of next-generation battery technology.

리튬-황 이차전지 양극 조성 성분의 비율이 전지 성능에 미치는 영향에 관한 연구 (Effect of Cathodes Prepared with Different Compositions on the Performace of Li-Sulfur Secondary Battery)

  • 최윤정;주재백;조원일
    • 전기화학회지
    • /
    • 제21권1호
    • /
    • pp.6-11
    • /
    • 2018
  • 다양한 전자제품에서 높은 성능의 이차 전지가 요구됨에 따라 안전하고 친환경적이며 경제적인 이차 전지 전극 재료의 개발을 필요로 하고 있다. 리튬-황 배터리는 높은 이론용량과 에너지밀도, 그리고 친환경적인 물질이라는 점에서 차세대 이차전지로써 주목받고 있지만, 폴리설파이드의 용출로 인한 전지 용량감소현상이 일어나고, 황의 부도체 특성으로 인해 아직 상용화 단계에 미치지 못하고 있다. 본 연구에서는 보다 향상된 이차 전지 전극 재료로서 다른 양극 물질들에 비해 에너지 밀도가 높은 황을 양극재로 사용하여 전지를 만들고 이 때 양극 활물질의 구성요소인 황, 도전재, 바인더의 비율을 다양하게 변화하면서 양극을 제조하고 여러 전기화학적 평가를 거쳐 가장 좋은 전지 성능을 낼 수 있는 구성성분 비율을 모색하고자 하였다.

Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium-Sulfur Batteries

  • Liu, Ying;Lee, Dong Jun;Lee, Younki;Raghavan, Prasanth;Yang, Rong;Ramawati, Fitria;Ahn, Jou-Hyeon
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.97-102
    • /
    • 2022
  • Lithium sulfur (Li-S) batteries have attracted considerable attention as a promising candidate for next-generation power sources due to their high theoretical energy density, low cost, and eco-friendliness. However, the poor electrical conductivity of sulfur and its insoluble discharging products (Li2S2/Li2S), large volume changes, severe self-discharge, and dissolution of lithium polysulfide intermediates result in rapid capacity fading, low Coulombic efficiency, and safety risks, hindering Li-S battery commercial development. In this study, a three-dimensionally (3D) connected hierarchical porous carbon framework (HPCF) derived from waste sunflower seed shells was synthesized as a sulfur host for Li-S batteries via a chemical activation method. The natural 3D connected structure of the HPCF, originating from the raw material, can effectively enhance the conductivity and accessibility of the electrolyte, accelerating the Li+/electron transfer. Additionally, the generated micropores of the HPCF, originated from the chemical activation process, can prevent polysulfide dissolution due to the limited space, thereby improving the electrochemical performance and cycling stability. The HPCF/S cell shows a superior capacity retention of 540 mA h g-1 after 70 cycles at 0.1 C, and an excellent cycling stability at 2 C for 700 cycles. This study provides a potential biomass-derived material for low-cost long-life Li-S batteries.

Ionic Additives to Increase Electrochemical Utilization of Sulfur Cathode for Li-S Batteries

  • Seong, Min Ji;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.279-284
    • /
    • 2021
  • The high theoretical specific capacity of lithium-sulfur (Li-S) batteries makes them a more promising energy storage system than conventional lithium-ion batteries (LIBs). However, the slow kinetics of the electrochemical conversion reaction seriously hinders the utilization of Li-S as an active battery material and has prevented the successful application of Li-S cells. Therefore, exploration of alternatives that can overcome the sluggish electrochemical reaction is necessary to increase the performance of Li-S batteries. In this work, an ionic liquid (IL) is proposed as a functional additive to promote the electrochemical reactivity of the Li-S cell. The sluggish electrochemical reaction is mainly caused by precipitation of low-order polysulfide (l-PS) onto the positive electrode, so the IL is adopted as a solubilizer to remove the precipitated l-PS from the positive electrode to promote additional electron transfer reactions. The ILs effectively dissolve l-PS and greatly improve the electrochemical performance by allowing greater utilization of l-PS, which results in a higher initial specific capacity, together with a moderate retention rate. The results presented here confirmed that the use of an IL as an additive is quite effective at enhancing the overall performance of the Li-S cell and this understanding will enable the construction of highly efficient Li-S batteries.